
A Generic Exact Solver for Vehicle Routing

and Related Problems

Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, François

Vanderbeck

Volume 2019, Number 2

June, 2019

A Generic Exact Solver for Vehicle Routing and Related Problems

Artur Pessoaa,∗, Ruslan Sadykovb, Eduardo Uchoaa, Franois Vanderbeckc

a a Universidade Federal Fluminense, Rua Passo da Patria, 156/309-D, Niteroi – RJ, 24210-240, Brazil.
b INRIA Bordeaux - Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence, France.

c Atoptima, 351 cours de la Liberation, 33400 Talence, France.

Abstract

Major advances were recently obtained in the exact solution of Vehicle Routing Problems (VRPs).

Sophisticated Branch-Cut-and-Price (BCP) algorithms for some of the most classical VRP vari-

ants now solve many instances with up to a few hundreds of customers. However, adapting and

reimplementing those successful algorithms for other variants can be a very demanding task. This

work proposes a BCP solver for a generic model that encompasses a wide class of VRPs. It incor-

porates the key elements found in the best existing VRP algorithms: ng-path relaxation, rank-1

cuts with limited memory, path enumeration, and rounded capacity cuts; all generalized through

the new concept of “packing set”. This concept is also used to derive a branch rule based on

accumulated resource consumption and to generalize the Ryan and Foster branch rule. Extensive

experiments on several variants show that the generic solver has an excellent overall performance,

in many problems being better than the best specific algorithms. Even some non-VRPs, like bin

packing, vector packing and generalized assignment, can be modeled and effectively solved.

Keywords: Integer Programming, Column Generation, Routing

1. Introduction

Since its introduction by Dantzig and Ramser (29), the Vehicle Routing Problem (VRP) has

been one of the most widely studied in combinatorial optimization. Google Scholar indicates that

691 works containing the exact string “vehicle routing” in the title were published only in 2018.

VRP relevance stems from its direct use in the real systems that distribute goods and provide

services, vital to the modern economies. Reflecting the large variety of conditions in those systems,

the VRP literature is spread into dozens, perhaps hundreds, of variants. For example, there are

variants that consider capacities, time windows, heterogeneous fleets, multiple depots, pickups

and deliveries, optional customer visits, arc routing, etc.

∗Corresponding author
∗∗A short version of this work was already published in (66).
Email addresses: artur@producao.uff.br (Artur Pessoa), ruslan.sadykov@inria.fr (Ruslan Sadykov),

uchoa@producao.uff.br (Eduardo Uchoa), fv@atoptima.com (Franois Vanderbeck)

Research papers in Cadernos do LOGIS-UFF are not peer reviewed, authors are responsible for their contents.

Cadernos do LOGIS-UFF L-2019-2 3

In recent years, big advances in the exact solution of VRPs had been accomplished. A mile-

stone was certainly the Branch-Cut-and-Price (BCP) algorithm of (59; 61), that could solve

Capacitated VRP (CVRP) instances with up to 360 customers, a large improvement upon the

previous record of 150 customers. That algorithm exploits many elements introduced by several

authors, combining and enhancing them. In particular, the new concept of limited memory cut

proved to be pivotal. Improvements of the same magnitude were later obtained for a number

of classical variants like VRP with Time Windows (VRPTW) (60), Heterogeneous Fleet VRP

(HFVRP) and Multi Depot VRP (MDVRP) (64), and Capacitated Arc Routing (CARP) (63).

For all those variants, instances with about 200 customers are now likely to be solved, perhaps

in hours or even days. However, there is something even more interesting: many instances with

about 100 customers, that a few years ago would take hours, are solved in less than 1 minute. This

means that many more real world instances can now be tackled by exact algorithms in reasonable

times.

Unhappily, designing and coding each one of those complex and sophisticated BCPs has been a

highly demanding task, measured on several work-months of a skilled team. In effect, this prevents

the use of those algorithms in real world problems, that actually, seldom correspond exactly to

one of the most classical variants. This work presents a framework that can handle most VRP

variants found in the literature and can be used to model and solve many other new variants. In

order to obtain state-of-the-art BCP performance, some key elements found in the best specific

VRP algorithms had to be generalized. The new concept of packing set was instrumental for that.

The quest for general exact VRP algorithms can be traced back to Balinski and Quandt (11),

where a set partitioning formulation valid for many variants was proposed. That formulation

had only turned practical in the 1980’s and 1990’s, when the Branch-and-Price (BP) method was

developed. At that time, it was recognized that the pricing subproblems could often be modeled as

Resource Constrained Shortest Path (RCSP) problems and solved by labeling algorithms, leading

to quite generic methods (for example, Desaulniers et al.(32)). However, those BP algorithms

only worked well on problems with “tightly constrained” routes, like VRPTW with narrow time

windows. Many variants, including CVRP, were much better handled by Branch-and-Cut (BC)

algorithms using problem-specific cuts (for example, Lysgaard et al. (56)). In the late 2000’s

decade, after works like (39; 8; 48; 33; 74; 7; 17), it became clear that the combination of cut and

column generation performs better than pure BP or pure BC on almost all problems. Until today,

BCP remains the dominant VRP approach. A first attempt of a generic BCP was presented in

Baldacci and Mingozzi (9), where 7 variants, all of them particular cases of the HFVRP, could

be solved. Recently, (76) proposed a BCP for several particular cases of the HFVRP with time

windows. The framework now proposed is far more generic than that.

Cadernos do LOGIS-UFF L-2019-2 4

2. The Basic Model

In this section, we provide a formal definition of a generic model that can be solved by a

branch-cut-and-price algorithm, where all pricing subproblems are modeled as RCSP problems.

2.1. Graphs for RCSP Generation

Define directed graphs Gk = (V k, Ak), k ∈ K. Let V = ∪k∈KV k and A = ∪k∈KAk. The

graphs are not necessarily simple and may even have loops. Vertices and arcs in all graphs are

distinct. Each graph has special source and sink vertices: vksource and vksink. The source and sink

may be distinct vertices, but may also be the same vertex. Define set Rk of resources. For each

r ∈ Rk and a ∈ Ak, qa,r ∈ R is the consumption of resource r in arc a. Resources without

any negative consumption are called monotone, otherwise they are non-monotone. Set Rk is

divided into main resources RkM and secondary resources RkN . Main resources should be monotone.

Moreover, there should not exist a cycle in Gk with zero consumption of all main resources.

Therefore, unless Gk is acyclic, it is mandatory the existence of at least one main resource. As will

be discussed in Section 5, the concept of main resource is directly related to key implementation

issues. Secondary resources may be monotone or non-monotone. Finally, resources are also

classified as disposable or non-disposable. By default, resources are assumed to be disposable. The

existence of non-disposable resources should be explicitly indicated. There are finite accumulated

resource consumption intervals [la,r, ua,r], a ∈ Ak. Since in most applications these intervals are

more naturally defined on vertices, we may define intervals [lv,r, uv,r], v ∈ V k, meaning that

[la,r, ua,r] = [lv,r, uv,r] for every arc a ∈ δ−(v) (i.e., entering v). A resource constrained path

p = (vksource = v0, a1, v1, . . . , an−1, vn−1, an, vn = vksink) over a graph Gk should have n ≥ 1 arcs,

vj 6= vksource and vj 6= vksink, 1 ≤ j ≤ n− 1, and is feasible if:

• for every r ∈ Rk that is disposable, the accumulated resource consumption Sj,r at visit j,

0 ≤ j ≤ n, where S0,r = 0 and Sj,r = max{laj ,r, Sj−1,r + qaj ,r}, does not exceed uaj ,r;

• for every r ∈ Rk that is non-disposable, the accumulated resource consumption Sj,r at visit

j, 0 ≤ j ≤ n, where S0,r = 0 and Sj,r = Sj−1,r + qaj ,r, lies in the interval [laj ,r, uaj ,r].

Note that some feasible paths may not be elementary, some vertices or arcs being visited more

than once. For each k ∈ K, let P k denote the set of all feasible resource constrained paths in Gk.

Each set P k is finite, either because Gk is acyclic or because the main resources limit the number

of times that each vertex or arc can be visited. Define P = ∪k∈KP k. As vertices and arcs in

different graphs are distinct, paths in different graphs are also distinct.

2.2. Formulation

For all a ∈ A and p ∈ P , let hpa indicate how many times arc a appears in path p. The problem

should be formulated as follows.

Cadernos do LOGIS-UFF L-2019-2 5

Min
n1∑
j=1

cjxj +
n2∑
s=1

fsys (1a)

S.t.
n1∑
j=1

αijxj +
n2∑
s=1

βisys ≥ di, i = 1, . . . ,m, (1b)

xj =
∑
k∈K

∑
p∈Pk

(∑
a∈M(xj)

hpa

)
λp, j = 1 . . . , n1, (1c)

Lk ≤
∑
p∈Pk

λp ≤ Uk, k ∈ K, (1d)

λp ∈ Z+, p ∈ P, (1e)

xj ∈ Z, ys ∈ Z, j = 1, . . . , n̄1, s = 1, . . . , n̄2, (1f)

where xj , 1 ≤ j ≤ n1, ys, 1 ≤ s ≤ n2, and λp, p ∈ P , are variables. The first n̄1 x variables

and the first n̄2 y are defined to be integer; all λ variables are non-negative integer. Equations

(1a) and (1b) define a general objective function and m general constraints over those variables,

respectively. Constraints (1b) may even contain exponentially large families of cuts, provided

that suitable procedures are given for their separation. However, by simplicity, we continue the

presentation as if all the m constraints are explicitly defined. For each variable xj , 1 ≤ j ≤ n1,

M(xj) ⊆ A defines its mapping into a non-empty subset of the arcs. We remark that mappings do

not need to be disjoint, the same arc can mapped to more than one variable xj . Define M−1(a)

as {j | a ∈ M(xj)}. As not all arcs need to belong to some mapping, some M−1 sets may be

empty. The relation between variables x and λ is given by (1c). For each k ∈ K, Lk and Uk are

given lower and upper bounds on the number of paths from Gk in a solution. Eliminating the x

variables and relaxing the integrality constraints, the following LP is obtained:

Min
∑
k∈K

∑
p∈Pk

(
n1∑
j=1

cj
∑

a∈M(xj)

hpa

)
λp +

n2∑
s=1

fsys (2a)

S.t.
∑
k∈K

∑
p∈Pk

(
n1∑
j=1

αij
∑

a∈M(xj)

hpa

)
λp +

n2∑
s=1

βisys ≥ di, i = 1, . . . ,m, (2b)

Lk ≤
∑
p∈Pk

λp ≤ Uk, k ∈ K, (2c)

λp ≥ 0, p ∈ P. (2d)

Master LP (2) is solved by column generation. Let πi, 1 ≤ i ≤ m, denote the dual variables of

Constraints (2b), νk+ and νk−, k ∈ K, are the dual variables of Constraints (2c). The reduced cost

of an arc a ∈ A is defined as:

c̄a =
∑

j∈M−1(a)

cj −
m∑
i=1

∑
j∈M−1(a)

αijπi.

Cadernos do LOGIS-UFF L-2019-2 6

The reduced cost of a path p = (v0, a1, v1, . . . , an−1, vn−1, an, vn) ∈ P k is:

c̄(p) =
n∑
j=1

c̄aj − νk+ − νk−.

So, the pricing subproblems correspond to finding, for each k ∈ K, a path p ∈ P k with minimum

reduced cost.

3. Generalizing State-of-the-Art Elements: Packing Sets

Formulation (1) can be used to model most VRP variants and also some other non-VRP

applications. It can be solved by a standard BP algorithm (or a standard robust BCP algorithm

(69), if (1b) contains separated constraints), where the RCSP subproblems are handled by a

labeling dynamic programming algorithm. However, its performance on the more classic VRP

variants would be very poor when compared to the best existing specific algorithms. One of the

main contributions of this work is a generalization of the key additional concepts found in those

state-of-the-art algorithms, leading to the construction of a powerful and still quite generic BCP

algorithm.

In order to do that, we introduce a new concept. Let B ⊂ 2A be a collection of mutually

disjoint subsets of A such that the constraints:

∑
p∈P

(∑
a∈B

hpa

)
λp ≤ 1, B ∈ B, (3)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of Formulation (1). In those conditions,

we say that each element of B is a packing set. Note that a packing set can contain arcs from

different graphs and not all arcs in A need to belong to some packing set. The definition of

a proper collection B is application specific and part of the modeling task. It does not follow

automatically from the analysis of Formulation (1).

In many applications the packing sets are more naturally defined on vertices, so we also provide

that modeling alternative. Let coefficient hpv indicate how many times vertex v appears in a path

p. Let BV ⊂ 2V be a collection of mutually disjoint subsets of V such that the constraints:

∑
p∈P

(∑
v∈B

hpv

)
λp ≤ 1, B ∈ BV , (4)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of Formulation (1). In those conditions,

we say that the elements of BV are packing sets on vertices. Actually, in Section 5.1.1 we show

that in some symmetric problems there is a computational advantage in defining packing sets on

vertices.

Cadernos do LOGIS-UFF L-2019-2 7

The following concepts — ng-paths, Limited Memory Rank-1 Cuts, path enumeration, accu-

mulated consumption branching, and rounded capacity cuts — were originally proposed and used

on the most classical VRP variants, often CVRP and VRPTW. In our proposed generalization,

those problems will correspond to simple models where the packing sets in BV are the singletons

formed by each customer vertex.

3.1. ng-paths

When modeling classical VRPs, one of the weaknesses of linear relaxation (2) is often the

existence of non-elementary paths in P that can not be part of any integer solution. In those

cases, one would like to eliminate all those paths from the definition of P . However, this would

make the pricing subproblems much harder, to the point of becoming intractable in many cases.

A good compromise between formulation strength and pricing difficulty can be obtained by the

so-called ng-paths, introduced in Baldacci et al. (10).

In our more general context, we say that a path is B-elementary if it does not use more

than one arc in the same packing set of B. Let P kelem be the subset of the paths in P k that are

B-elementary, Pelem = ∪k∈KP kelem.

Ideally, we would like to price only B-elementary paths. Instead, we settle for generalized

B-ng-paths defined as follows. For each arc a ∈ A, let NG(a) ⊆ B denote the ng-set of a. A

B-ng-path may use two arcs belonging to the same packing set B, but only if the subpath between

those two arcs passes by an arc a such that B /∈ NG(a). The ng-sets may be determined a priori;

but also dynamically, like in (72) and (21).

If the packing sets are being defined on vertices, there is the similar concept of BV -elementary

path: a path that does not use more than one vertex in the same packing set of BV . We also

denote by P kelem the subset of the paths in P k that are BV -elementary. In this context, for each

vertex v ∈ V , let NG(v) ⊆ BV be the ng-set of v. A BV -ng-path may use two vertices belonging

to the same packing set B, but only if the subpath between those two vertices passes by a vertex

v such that B /∈ NG(v).

When B or BV are clear from the context, we may still refer to B-ng-paths or BV -ng-paths

simply as ng-paths.

3.2. Limited Memory Rank-1 Cuts

The Rank-1 Cuts (R1Cs) (67; 62; 20) are a generalization of the Subset Row Cuts proposed by

Jepsen et al. (48). Here, they are further generalized as follows. Consider a collection of packing

sets B. A Chvátal-Gomory rounding of Constraints (4), using a non-negative multiplier ρB for

each B ∈ B, yields: ∑
p∈P

⌊∑
B∈B

ρB
∑
a∈B

hpa

⌋
λp ≤

⌊∑
B∈B

ρB

⌋
. (5)

Those R1Cs are potentially very strong, but each added cut makes the pricing subproblems

significantly harder.

Cadernos do LOGIS-UFF L-2019-2 8

The limited memory technique (59) is essential for mitigating that negative impact. In this

technique, a R1C, characterized by its vector of multipliers ρ, is associated to a memory arc-set

A(ρ) ⊆ A. The limited-memory R1C (lm-R1C) is defined as:

∑
p∈P

α(ρ,A(ρ), p)λp ≤

⌊∑
B∈B

ρB

⌋
, (6)

where the coefficient α(ρ,A(ρ), p) is computed as in the pseudo-code that describes Function α.

Function α(ρ,A, p = (v0, a1, v1, . . . , an−1, vn−1, an, vn))

1 α← 0, S ← 0;
2 for j = 1 to n do
3 if aj /∈ A(ρ) then
4 S ← 0;

5 if aj ∈ B ∈ B then
6 S ← S + ρB;
7 if S ≥ 1 then
8 S ← S − 1, α← α+ 1;

9 return α;

If A(ρ) = A, constraints (5) and (6) are identical. Otherwise, variables λp corresponding

to paths p passing by arcs a /∈ A(ρ) may have their coefficients decreased. However, if the

memory sets are adjusted in such a way that variables λp with positive values in the current

linear relaxation have the same coefficients that they would have in (5), the resulting lm-R1C is

as effective as the original R1C. Yet, if the final A(ρ) is a small subset of A, as usually happens,

the impact in the pricing is much reduced.

If the model defines its packing sets in vertices, the R1Cs are defined in a similar way. There

is a non-negative multiplier ρB for each B ∈ BV and the cut is:

∑
p∈P

 ∑
B∈BV

ρB
∑
v∈BV

hpv

λp ≤
 ∑
B∈BV

ρB

 . (7)

Given a memory arc-set A(ρ) ⊆ A corresponding to the vector ρ, the lm-R1C is defined as:

∑
p∈P

α(ρ,A(ρ), p)λp ≤

 ∑
B∈BV

ρB

 , (8)

where Function Alpha is the same, except that the condition in line 5 is replaced by (vj ∈ B ∈ BV).

Regardless of if the packing sets are being defined on arcs or on vertices, it is possible to use lm-

R1Cs where the memories are defined by vertex-sets. In this case, a memory vertex-set V (ρ) ⊆ V

Cadernos do LOGIS-UFF L-2019-2 9

should be assigned to the lm-R1C corresponding to vector ρ. Function Alpha should receive V (ρ)

instead of A(ρ) as parameter and the condition in line 3 should be changed to (vj /∈ V (ρ)).

As discussed in (64) and (76), memory vertex-sets perform better for most instances of some

classical VRPs. This happens because R1C memory adjustment converges in less iterations in

that case. In the other hand, memory arc-sets may be better for some harder instances; because

they allow for a finer memory adjustment, leading to less impact in the pricing.

3.3. Path Enumeration

The path enumeration technique was proposed by Baldacci et. al. (8), and later improved

by Contardo and Martinelli (27). It consists in trying to enumerate into a pool all paths in a

certain set P k that can possibly be part of an improving solution. After a successful enumeration,

the corresponding pricing subproblem k can be solved by inspection, saving time. Moreover,

standard fixing by reduced costs can be used to remove paths from the pools. If the enumeration

has already succeeded for all k ∈ K and once the total number of paths in the tables is reduced

to a reasonably small number (say, less than 10,000), the formulation restricted to those paths

can be given and directly solved by a general MIP solver.

In our context, we try to enumerate all paths p ∈ P kelem such that c̄(p) < UB − LB, where

UB is the best known integer solution cost, and LB the value of the current linear relaxation.

Moreover, if two paths p and p′ in P k map to variables λp and λ′p with identical coefficients in the

essential constraints in (2b), the one with a larger cost is dominated and can be dropped. The

essential constraints are those that are required to make the formulation valid, constraints in (2b)

added only to strengthen the linear relaxation are not essential.

However, the enumeration procedure would be highly inefficient if the dominance could only

be checked for pairs of complete paths. Instead, it is necessary to perform dominance over the

partial paths (B-elementary paths starting at the source vertex) that are being constructed along

the procedure. Our procedure uses the following dominance rule: if p and p′ are partial paths

ending at the same vertex and having already visited exactly the same packing sets in B (regardless

of the visitation order), the one with larger cost (breaking ties arbitrarily) is considered dominated

and dropped. No complete path in P kelem that is the completion of a dominated partial path will

be produced. The following condition is sufficient to assure that such enumeration procedure is

valid (i.e., no improving solution is ever missed):

Sufficient Condition for Enumeration. Every two feasible partial B-elementary paths starting

in vksource that end in the same vertex and map to different coefficients in some essential constraint

in (2b) should have visited different subsets of B.

We remark that the above condition can not be checked automatically. In fact, in general it is

not even possible to automatically determine what are the essential constraints in (2b). It is up

to the modeler to prove that the provided model satisfies the sufficient condition, so enumeration

can be used. Happily, in many models (including all the examples in Section 4) it is easy to prove

Cadernos do LOGIS-UFF L-2019-2 10

that the condition is satisfied. However, if it is not satisfied, it is up to the modeler to prove

that the enumeration is valid for his model directly from the dominance rule. Otherwise, the

enumeration should be turned off.

3.4. Branching

Branching over individual x and y variables (or over constraints defined over those variables)

is simple and do not change the structure of the pricing subproblems. In many models this kind

of branching is sufficient for correctness. However, there are models where Constraints (1e) need

to be explicitly enforced. However, branching over individual λ variables should be avoided due

to a big negative impact in the pricing and also due to highly unbalanced branch trees (82). The

model offers two ways of branching over sets of λ variables:

• Choose distinct sets B and B′ in B. Let P (B,B′) ⊆ P be the subset of the paths that

contain arcs in both B and B′. The branch is over the value of
∑

p∈P (B,B′) λp, either 0 or

1. This is a generalization of the Ryan and Foster branch rule (75). It is still to be avoided

if possible, because it makes the pricing harder. However, using that scheme leads to more

balanced search trees.

• Choose B ∈ B, r ∈ RkM and a certain threshold value t∗: in the left child make ua,r = t∗,

for all a ∈ B ∩Gk(a); in the right child make la,r = t∗. This branching over the accumulated

consumption of a resource generalizes the strategy proposed by Gélinas et al. (41). The

branching is not likely to be complete, in the sense that some fractional λ solutions can not

be eliminated by it. However, it does not increase the pricing difficulty and it may work

well in practice, postponing (and even avoiding) the use of a branching that makes pricing

harder.

3.5. Rounded Capacity Cut Separators

The Rounded Capacity Cuts (RCCs), first proposed for CVRP (51), are still useful on modern

BCP algorithms for that problem and also for a number of other VRP variants. Moreover, a very

good heuristic separation routine is available for it in CVRPSEP library (55). So, we decided to

introduce the concept of RCC separator as a feature of our model.

The RCC separator can only be used if the packing sets are defined on vertices. For a vertex

v ∈ V , define B(v) as the packing set of BV that contains v, B(v) = ∅ if v is not in any packing

set. An RCC separator is defined by setting a capacity Q and a demand function d : BV ∪ ∅ → R+

such that d(∅) = 0 and is valid if there exists an optimal solution (x∗, y∗, λ∗) of Formulation (1)

such that:

1.
∑n

j=0 d(B(vj)) ≤ Q, for all p = (v0, a1, v1, . . . , an−1, vn−1, an, vn) ∈ P with λ∗p ≥ 1;

2. for all B ∈ BV such that d(B) > 0, the corresponding constraints in (4) should be satisfied

with equality by (x∗, y∗, λ∗).

Cadernos do LOGIS-UFF L-2019-2 11

Again, it is up to the modeler to prove that the separator included in the model is valid.

Given a valid RCC separator, if S ⊆ BV , d(S) denotes
∑

B∈S d(B) and hpS is the number

of times that an arc in path p ∈ P enters in S. We say that an arc (vj−1, vj) enters in S if

B(vj−1) /∈ S and B(vj) ∈ S. A Rounded Capacity Cut is the following valid inequality:

∑
p∈P

hpSλp ≥
⌈
d(S)

Q

⌉
. (9)

Cuts in format (9) are robust. The dual variable of the cut corresponding to an S ⊆ BV is simply

subtracted from the reduced cost of all arcs entering S.

It is possible to define multiple RCC separators in the same model, each one having its demand

function and capacity. This can be useful for modeling VRPs where routes are constrained by

multiple dimensions. Packing sets would have zero demand in the dimensions that they do not

“participate”.

4. Model Examples

We selected a number of classical problems to illustrate the modeling capabilities of our solver.

4.1. Generalized Assignment Problem (GAP)

Data: Set T of tasks; set K of machines; capacity Qk, k ∈ K; assignment cost ckt and machine

load wkt , t ∈ T , k ∈ K.

Goal: Find an assignment of tasks to machines such that the total load in each machine does

not exceed its capacity, with minimum total cost.

Model: RCSP generator graphs Gk = (V k, Ak) for each k ∈ K: V k = {vkt : t = 0, . . . , |T |},
Ak = {akt+ = (vkt−1, v

k
t), akt− = (vkt−1, v

k
t) : t = 1, . . . , |T |}, vksource = vk0 , vksink = vk|T | (see Fig. 1);

Rk = RkM = {rk}; qakt+,rk = wkt , qakt−,rk
= 0, t ∈ T ; [lvkt ,rk

, uvkt ,rk
] = [0, Qk], t ∈ T ∪ {0}. Integer

variables xkt , t ∈ T , k ∈ K. The formulation is:

Min
∑
t∈T

∑
k∈K

ckt x
k
t (10a)

S.t.
∑
k∈K

xkt = 1, t ∈ T ; (10b)

Lk = 0, Uk = 1, k ∈ K; M(xkt) = {akt+}, t ∈ T, k ∈ K. B = ∪t∈T {{akt+ : k ∈ K}}. Branching is

over the x variables. Enumeration is on.

Comments: Graphs Gk, illustrated in Figure 1, are designed to model binary knapsack con-

straints: each path in P k corresponds to a possible assignment of a set of tasks to machine k. The

basic formulation in this model is defined as follows. The objective function (10b) corresponds to

the general objective (1a) and Constraints (10b) to the general constraints (1b). The definition of

Cadernos do LOGIS-UFF L-2019-2 12

variables x as integer yields integrality constraints corresponding to (1f). Constraints (1c) are in-

directly defined by the RCSP graphs and by the mapping. Finally, Constraints (1d) are indirectly

defined the graphs and by the values of Lk and Uk. A collection of packing sets is provided, so the

features described in Section 3, that extend the basic formulation, can be used. In this model, the

validity of the chosen B is a clear consequence of Constraints (10b) and of the mapping. However,

in other problems, the validity of the packing sets provided by the modeler may not be obvious.

All constraints in (10b) are essential. It can be checked that the enumeration sufficient condition

is satisfied, so the enumeration procedure can be used.

vk0 vk1 vk2 vk3 vk|T |−1 vk|T |
ak1+

ak1−

ak2+

ak2−

ak3+

ak3−

ak|T |+

ak|T |−

.

Figure 1: GAP model graph, RCSPs correspond to binary knapsack solutions.

4.2. Vector Packing (VPP) / Bin Packing (BPP)

Data: Set T of items; set D of dimensions; bin capacities Qd, d ∈ D; item weight wdt , t ∈ T ,

d ∈ D. (Bin packing is the case where |D| = 1).

Goal: Find a packing using the minimum number of bins, such that, for each dimension, the

total weight of the items in a bin does not exceed its capacity.

Model: A single graph G = (V,A) (we omit the index k in such cases): V = {vt : t = 0, . . . , |T |},
A = {at+ = (vt−1, vt), at− = (vt−1, vt) : t = 1, . . . , |T |}, vsource = v0, vsink = v|T |. R = RM = D;

qat+,d = wdt , qat−,d = 0, t ∈ T, d ∈ D; [lvt,d, uvt,d] = [0, Qd], t ∈ T ∪ {0}, d ∈ D. Continuous

variables xt, t ∈ T ∪ {0}. The formulation is:

Min x0 (11a)

S.t. xt = 1, t ∈ T ; (11b)

L = 0, U = ∞; M(x0) = {a1+, a1−}, M(xt) = {at+}, t ∈ T . B = ∪t∈T {{at+}}. Branching over

accumulated resource consumption and, if still needed, by Ryan and Foster rule. Enumeration is

on.

Comments: Defining the x variables as integer would be useless, it would not be possible to

branch over them (except, in very limited way, over x0). Branching on λ variables is needed; Ryan

and Foster rule suffices for correctness, however accumulated resource consumption branching

(that may not suffice) should be performed first.

Cadernos do LOGIS-UFF L-2019-2 13

4.3. Capacitated Vehicle Routing Problem (CVRP)

Data: Undirected graph G′ = (V,E), V = {0, . . . , n}, 0 is the depot, V+ = {1, . . . , n} are the

customers; positive cost ce, e ∈ E; positive demand di, i ∈ V+; vehicle capacity Q.

Goal: Find a minimum cost set of routes, starting and ending at the depot, visiting all customers

and such that the sum of the demands of the customers in a route does not exceed vehicle capacity.

Model: A single graph G = (V,A), A = {(i, j), (j, i) : {i, j} ∈ E}, vsource = vsink = 0; R = RM =

{1}; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0); li,1 = 0, ui,1 = Q, i ∈ V . Integer variables

xe, e ∈ E. The formulation is:

Min
∑

e∈E cexe (12a)

S.t.
∑

e∈δ(i) xe = 2, i ∈ V+, (12b)

xe ≤ 1, e ∈ E \ δ(0); (12c)

L = d
∑n

i=1 di/Qe, U = n; M(xe) = {(i, j), (j, i)}, e = {i, j} ∈ E. BV = ∪i∈V+{{i}}. RCC

separator on (∪i∈V+{({i}, di)}, Q). Branching on x variables. Enumeration is on.

Comments: Constraints (12c) are separated (by inspection) as user cuts. The packing sets

are defined on vertices. In this problem, defining the resource consumption in a symmetric way

(q(i,j),1 = q(j,i),1) improves the efficiency of the pricing, as will be discussed in Section 5.1.1. As

constraints (12c) are not essential, the enumeration condition over (12b) is satisfied. The function

d : BV ∪ ∅ → R+ for the RCC separator is defined as the set of all pairs (B, d(B)) for which

d(B) 6= 0.

4.4. Heterogeneous Fleet Vehicle Routing Problem (HFVRP)

Data: Undirected graph G′ = (V,E), V = {0, . . . , n}, 0 is the depot, V+ = {1, . . . , n} are the

customers; positive demand di, i ∈ V+; set of vehicle types K = {1, . . . ,m}; number of available

vehicles uk, k ∈ K; edge costs cke , e ∈ E, k ∈ K (assume that fixed costs fk for using a vehicle

of type k are included in the cost of the edges incident to the depot); vehicle type capacity Qk,

k ∈ K.

Goal: Find a minimum cost set of routes, each route associated to a vehicle type and starting

and ending at the depot, visiting all customers and such that the sum of the demands of the

customers in a route does not exceed its vehicle type capacity. The number of routes for a vehicle

type should not exceed its availability.

Model: Graphs Gk = (V k, Ak), V k = {vk0 , . . . , vkn}, Ak = {(vki , vkj), (vkj , v
k
i) : {i, j} ∈ E},

vksource = vksink = vk0 , k ∈ K; Rk = RkM = {rk}; qa,1 = (di + dj)/2, a = (vki , v
k
j) ∈ Ak, k ∈ K

(define d0 = 0); lvki ,rk
= 0, uvki ,rk

= Qk, vki ∈ V k, k ∈ K. Integer variables xke , e ∈ E, k ∈ K. The

Cadernos do LOGIS-UFF L-2019-2 14

formulation is:

Min
∑

k∈K
∑

e∈E c
k
ex

k
e (13a)

S.t.
∑

k∈K
∑

e∈δ(i) x
k
e = 2, i ∈ V+; (13b)

Lk = 0, Uk = uk; M(xke) = {(vki , vkj), (vkj , v
k
i)}, e = {i, j} ∈ E, k ∈ K. BV = ∪i∈V+{{vki : k ∈ K}}.

RCC separator on (∪i∈V+{({vki : k ∈ K}, di)},maxk∈K Q
k). Branching first on the aggregation

of x variables corresponding to number of times that a vehicle of each type is used, then on the

aggregation of x variables corresponding to the assignment of a customer to a vehicle type or on

the aggregation of x variables corresponding to the edges of the original graph G′. Enumeration

is on.

4.5. Team Orienteering Problem (TOP)

Data: Directed graph G = (V,A), V = {0, . . . , n+1}, 0 and n+1 are the initial and final depots,

respectively, V+ = {1, . . . , n} are the customers; positive travel time ta, a ∈ A; profit pi, i ∈ V+;

maximum route duration T ; and fleet size F .

Goal: Find a set of at most F routes, each one starting at 0, ending at n+ 1 and not exceeding

the maximum route duration, that visit each customer at most once and maximize the total profit

of the visited customers.

Model: A single graph G = (V,A), vsource = 0, vsink = n + 1; R = RM = {1}; qa,1 = ta,

a = (i, j) ∈ A; li,1 = 0, ui,1 = T, i ∈ V . Binary variables xa, a ∈ A and yi, i ∈ V+. The

formulation is:

Min −
∑

i∈V+ piyi (14a)

S.t.
∑

i∈δ−(i) xa = yi, i ∈ V+; (14b)

L = 0, U = F ; M(xa) = {a}, a ∈ A; BV = ∪i∈V+{{i}}. Branching on x or on y variables.

Enumeration is on.

Comments: The y variables, that indicate which customers are visited, are not mapped to any

arc.

4.6. Pickup and Delivery VRPTW (PDPTW)

Data: Directed graph G = (V,A), where V = {0} ∪ P ∪D, P = {1, . . . , n} is the set of pickup

vertices and D = {n+ 1, . . . , 2n} the set of corresponding deliveries (a pickup at i correspond to

a delivery at i + n); vehicle capacities Q; traveling cost ca and time (including service time) ta ,

a ∈ A; positive demands dv, v ∈ P (dv = −dv−n, v ∈ D); and time windows [lv, uv], v ∈ V .

Goal: Find a minimum cost set of routes, starting and ending at the depot, performing all pickups

and deliveries within the time windows (waiting is allowed) and such that, along a route, the total

demand already collected but not yet delivered does not exceed vehicle capacity.

Cadernos do LOGIS-UFF L-2019-2 15

Model: A single graph G = (V,A), vsource = vsink = 0. RM = {n + 2}; RN = {1, . . . , n + 1},
the first n resources are non-disposable; q(v,v′),v′ = 1, if v′ ∈ P , q(v,v′),v′−n = −1, if v′ ∈ D,

and q(v,v′),n+1 = dv′ , (v, v′) ∈ A; qa,n+2 = ta, a ∈ A; all other resource consumptions are zero;

uv,r = 1, v ∈ P ∪D, r = 1, . . . , n, uv,n+1 = Q, v ∈ V , and (lv,n+2, uv,n+2) = (lv, uv), v ∈ V ; all

other resource bounds are zero. Binary variables xa, a ∈ A. The formulation is:

Min
∑

a∈A caxa (15a)

S.t.
∑

a∈δ−(v) xa = 1, v ∈ P ; (15b)

L = 0, U =∞; M(xa) = {a}, a ∈ A. BV = ∪v∈P∪D{{v}}. Branching first on the aggregation of

x variables corresponding to number of routes, then on individual x variables.

Comments: This example illustrates the use of non-monotone secondary resources, some of them

being defined as non-disposable. The first n resources are used to enforce that if a route performs

a pickup i it can not return to the depot before doing the corresponding delivery i+ n. If those

resources were disposable, routes that visit i+ n without having visited first i would be possible.

Resource n+ 1 controls the capacity along the route.

4.7. Capacitated Arc Routing (CARP)

Data: Undirected graph G′ = (V ′, E), V ′ = {0, . . . , n}, 0 is the depot vertex; positive cost ce and

non-negative demand de, e ∈ E, set of required edges S = {e ∈ E | de > 0}; vehicle capacity Q.

Goal: Find a minimum cost set of routes, closed walks starting and ending at the depot, that

serve the demands in all required edges. Edges in a route can be traversed either serving or

deadheading (not serving). The sum of the demands of the served edges in a route can not exceed

capacity.

Model: For i, j ∈ V ′, let D(i, j) ⊆ E be the set of edges in a chosen cheapest path from i to j,

with cost C(i, j) =
∑

e∈D(i,j) ce. Define a dummy required edge r0 = (0, 0′) and S0 = S ∪ {r0}.
Define an auxiliary undirected complete graph G′′ = (S0, F). For each r = (w1, w2) ∈ S0, define

o(r, w1) = w2 and o(r, w2) = w1.

The model has a single RCSP graph generator G = (V,A), V = {vwr : r ∈ S0, w ∈ r},
A = {(vw1

r1 , v
z1
r2), (vw1

r1 , v
z2
r2), (vw2

r1 , v
z1
r2), (vw2

r1 , v
z2
r2) : r1 = (w1, w2), r2 = (z1, z2) ∈ S0, r1 6= r2},

vsource = v0r0 , vsink = v0
′
r0 ; R = RM = {1}; for a = (vwr1 , v

z
r2) ∈ A, qa,1 = dr2 ; lv,1 = 0, uv,1 =

Q, v ∈ V . Binary variables xa, a ∈ A. For a = (vwr1 , v
z
r2) ∈ A, ca = C(w, o(r2, z)) + cr2 . The

formulation is:

Min
∑

a∈A caxa (16a)

S.t.
∑

a∈δ−({vw1
r ,v

w2
r }) xa = 1, r = (w1, w2) ∈ S, (16b)

plus Lifted Odd-Cutsets (14; 12); L = 0, U = ∞; M(xa) = {a}, a ∈ A. BV =

Cadernos do LOGIS-UFF L-2019-2 16

∪r=(w1,w2)∈S{{vw1
r , vw2

r }}. RCC separator on (∪r=(w1,w2)∈S{({vw1
r , vw2

r }, dr)}, Q). Branching first

on the aggregation of x variables corresponding to node degrees in original graph G′ or on the

aggregation of x variables corresponding edges of graph G′′.

Comments: A case where a more complex transformation (similar to (54)) is used to fit the

problem into the model. The separation of Lifted Odd-Cutsets is performed using the Gomory-

Hu tree algorithm.

5. Implementation

Algorithms used in the implementation of the solver are generalizations of already published

algorithms. Thus, we only give an overview of these algorithms; together with references to the

original papers. In fact, the main goal of this section is to explain how modeling decisions and

solver parameters impact the implemented algorithms.

5.1. Labeling Algorithm for Pricing Problems

Pricing problems are solved by a bi-directional labeling dynamic programming algorithm (71),

using the bucket graph implementation proposed in (76). A label is a data structure that repre-

sents either a forward partial path started in vertex vksource or a backward partial path started in

vertex vksink. Initially, only labels representing null paths at vksource or at vksink exist. Labels are

extended along arcs in Ak, if the new extended path is feasible, then the corresponding new label

is created. The key feature of a labeling algorithm is the use of dominance checks. Let p and p′ be

two partial paths ending at the same vertex. If it can be proved that any complete path that is a

completion of p′ will have a reduced cost greater than the reduced cost of the path obtained by the

same completion over p, then p′ is dominated by p and the corresponding label can be dropped.

Labels are grouped and stored in buckets. The idea is to perform frequent dominance checks only

for labels in the same bucket, in order to avoid spending an excessive time on those operations.

In our algorithm, labels with the same final vertex and within the same ranges of accumulated

consumption values of main resources are put in the same bucket. Such bucket organization has

advantages over a simpler organization based on resource discretization, used for example in (61):

it improves significantly the algorithm performance in the cases where resource intervals are given

by very large integer numbers and even allows the use of continuous resource consumptions.

Our implementation supports at most two main resources, as we believe that having three

or more main resources would result in too many buckets and too few labels per bucket, not

being computationally advantageous. Accumulated resource consumption ranges for buckets are

specified using the step size d̃r defined for each main resource r ∈ RkM . Each bucket contains

labels with a main resource consumption within two consecutive multiples of the step size for

this resource. Initial step sizes are defined using parameter ψbuck which designates the maximum

number of buckets per vertex. Let Q̄kr be the maximum spread of the resource consumption for

resource r ∈ RkM in graph Gk: Q̄r = uvksink,r
− lvksource,r. Then in the case with one main resource,

Cadernos do LOGIS-UFF L-2019-2 17

d̃1 = Q̄1/ψ
buck. In the case two main resources d̃r = Q̄r/

√
ψbuck for r = 1, 2. In the course of

the algorithm, step sizes may be automatically reduced (i.e. number of buckets per vertex may

be increased) if it determined that too many dominance checks are performed between labels in

a same bucket. If this happens, the buckets are recreated. Binary parameter ψreduc determines

whether automatic step size reduction is activated.

The bucket graph defines one node per bucket and directed arcs connecting pairs of buckets

through which the labels can be possibly extended. Distinct bucket graphs are then defined for

forward and backward labeling. The concept of bucket graph is useful because:

1. It helps to determine an efficient order of treatment for the buckets. If the bucket graph

is acyclic, it is desirable to process the buckets in its topological order because no further

extension from a bucket is necessary after it has been processed. If the bucket graph con-

tains cycles, then buckets are handled in the topological order of its strongly connected

components, trying to minimize such reprocessing.

2. It is used to improve the efficiency of performing dominance checks between labels in different

buckets.

3. Arcs can be removed from the bucket graph by reduced cost arguments, avoiding label

extensions in future calls to the pricing. This fixing procedure is more powerful than the

one in (47). Binary parameter φelimin determines whether this more sophisticated fixing

procedure is applied.

Our labelling algorithm and the bucket arc elimination procedure are bi-directional. For the

first main resource, we calculate a special resource consumption value q∗ equal to the average

middle value of the resource consumption bounds in all vertices. In the forward (backward)

labelling, we keep only labels with the first main resource consumption not larger (larger) than

q∗. Then the concatenation step is performed to obtain complete paths. Completion bounds are

used to speed up concatenation. If the difference between the number of forward and backward

non-dominated labels is large, the next call of the pricing will use an automatically adjusted value

of q∗. Parameter φbidir defines whether bidirectional search is used. If φbidir = 0, bidirectional

search is never used. If φbidir = 1, bidirectional search is always used. If φbidir = 2, bidirectional

search is used only for the exact labeling, and not used for the heuristic labeling presented in

Section 5.1.3.

5.1.1. Benefiting from symmetry

We exploit forward-backward path symmetry when solving the pricing problem for graph Gk,

k ∈ K, if the following conditions are satisfied.

• Packing sets are defined on vertices.

• For each arc a = (i, j) ∈ Ak, k ∈ K, there exists arc a′ = (j, i) ∈ Ak with the same

resource consumptions and the same inverse mapping: qa,r = qa′,r, for all r ∈ Rk, and

Cadernos do LOGIS-UFF L-2019-2 18

M−1(a) = M−1(a′). For the sake of symmetry detection, vertices vksource and vksink are

treated as the same vertex, even if the user set them as being distinct vertices.

• Resource consumption bounds are the same for all vertices: [lv,r, uv,r] = [lv′,r, uv′,r] = [0, Qr],

for all r ∈ R and for all pairs v, v′ ∈ V k.

Under these conditions, value q∗ is fixed to Q1/2. The backward labelling is not executed, this

saves a significant time. The concatenation is performed just after the forward labelling, using

symmetric copies of forward labels as backward labels, as described in (76).

5.1.2. Dominance on disposable and non-disposable resources

When performing dominance checks between labels corresponding to partial paths p and p′

ending at the same vertex, we need to compare their accumulated resource comsumptions. Path

p can only dominate p′ if, for every disposable resource r ∈ Rk, the accumulated consumption

of p is not larger than the accumulated consumption of p′. Note that a strictly smaller accu-

mulated consumption does not prevent the dominance, because it is always possible to dispose

the additional units of that resource in a completion of p. This is not true for non-disposable

resources. Therefore, path p can only dominate p′ if, for every non-disposable resource r ∈ Rk,
the accumulated consumption of p is identical to the accumulated consumption of p′. This means

that models should only define resources as non-disposable if this is really necessary. Remark that

monotone and non-monotone resources are not treated differently in the dominance.

A resource is binary if its accumulated consumption can only be 0 or 1. Sets of secondary

binary resources of the same type (disposable or not disposable) are implemented in a special way,

being represented as bitsets in the labels. This greatly decreases the time spent for dominance

checks between labels.

5.1.3. Pricing heuristics

We use two labelling heuristics similar to (76). In the lighter heuristic, only one label per

bucket is kept, the one with the smallest reduced costs. In the heavier heuristic, only reduced

cost and resource consumption is used to check dominance between labels. Label dimensions

related to ng-paths and rank-1 cuts are ignored.

5.2. Column and cut generation

We use three-stage column generation. In the first and second stages, the lighter and the

heavier labelling heuristics are used, and at most γheur columns are generated per iteration and

per k ∈ K. In the last stage, the exact labeling algorithm is used, and at most γexact columns are

generated per iteration and per k ∈ K. We use automatic dual price smoothing (65) technique to

improve the column generation convergence in each stage. Parameter σstab specifies the minimum

column generation stage in which stabilization is active. The column clean-up procedure is also

Cadernos do LOGIS-UFF L-2019-2 19

used: each time the total number of columns exceeds 10,000, only 66% of the columns with the

smallest reduced cost remain in the master problem while other columns are removed.

If enabled, the bucket arc elimination procedure for each pricing problem k ∈ K is performed

after the first column generation convergence and each time the current primal-dual gap is reduced

by more than 10% since the last call to it. Immediately after this procedure, the bi-directional

path enumeration labeling algorithm for graph Gk is executed. This algorithm is a generalization

of the one used in (8; 61). It is aborted if the number of non-dominated labels (in this context

they correspond to partial B-elementary paths) exceeds ωlabels or the number of generated paths

exceeds ωroutes. If the enumeration algorithm for graph Gk succeeds, i) the enumerated paths are

stored in a pool ii) all columns corresponding to paths that are not B-elementary are deleted from

the master, iii) in future column generation iterations the pricing is performed by inspection in

the pool, and iv) the fixing by reduced costs also starts to be performed in the pool and removes

paths from it. If the total number of paths for all graphs drops below ωMIP, all corresponding

columns are added to the restricted master, and current node is solved by the MIP solver.

Initial ng-sets may be explicitly given by the user. However, it is possible (and usually much

more practical) to specify a distance matrix between packing sets and a parameter ηinit, which

was always equal to 8 for the experiments reported in this paper. If packing sets are defined on

arcs, NG(a) will include the ηinit closest packings sets to the packing set of a according to the

distance matrix. If packing sets are defined on vertices, NG(a) will include the union of the ηinit

closest packings sets to the packing sets of both extremities of a.

We have implemented dynamic extension of ng-sets (72; 21), which is useful for some problems.

Given a fractional solution λ̄ obtained after column generation convergence, we augment ng-sets

based on “packing set cycles” in paths p ∈ P k such that λ̄p > 0. A packing set cycle is a partial

path started and finished by arcs belonging to a same packing set B. For each considered path,

we find all cycles of size at most 5 or, if there are no such cycles, a minimum size cycle. Then we

add B to NG(a) for every arc in these cycles. At most 100 paths p with cycles are considered,

those with the largest values λ̄p. The size of ng-sets is limited by parameter ηmax. All columns

corresponding to paths which are not feasible with respect to new ng-sets are deleted from the

restricted master.

In each cut round, we generate at most 100 rounded capacity cuts (if RCC separators are

defined). We call a rank-1 cut l-row if the corresponding vector ρ of multipliers has l positive

components. In each round, we generate at most θnum l-row rank-1 cuts for each l ∈ {1, 4, 5, 6, 7},
and at most 1.5 · θnum 3-row rank-1 cuts (which are subset-row cuts (48)). Parameter θrows

determines the maximum number of rows in rank-1 cuts, i.e. if l > θrows, l-row rank-1 cuts are

not separated. l-row rank-1 cuts are separated by exhaustive enumeration for l = {1, 3, 4}. For

separating other rank-1 cuts, a local search heuristic is used. It is based on the distance matrix

between packing sets, that should given by the user. The local search heuristic separates only

cuts corresponding to multipliers ρ such that every packing set B, ρB > 0, is among 16 closest to

Cadernos do LOGIS-UFF L-2019-2 20

any other packing set B′, ρB′ > 0.

There is parameter θmem to determine how rank-1 cuts limited memory is computed. If

θmem = 1, the arc memory is used as described in Section 3.2. If θmem = 2, the vertex memory is

used, which is “projected” to arcs between vertices in the memory before executing the labeling

algorithm. Vertex memory allows the algorithm to converge faster, as rank-1 cuts are stronger.

However, the impact on the running time of the labeling algorithm is larger. Thus, the obtained

dual bounds may be weaker due to the time thresholds τ soft and τhard defined below. If θmem = 0,

the root node is solved two times, first time with arc memory for rank-1 cuts, and the second

time with vertex memory. After solving the root, it is automatically determined based on the

latest pricing time and the dual bound obtained which memory is used for the remaining of the

branch-and-bound tree.

Increasing of ng-sets can also be considered as cut generation, as this procedure improves

dual bound given by the master problem. In the root node, ng-set augmentation has the highest

priority, robust cuts (RCCs and user cuts) have medium priority, and rank-1 cuts have the smallest

priority. We separate cuts with lower priority only if the tailing-off condition is satisfied for cuts

of higher priority. The tailing condition is fulfilled when the dual gap is reduced by less than

δgap% after δnum round of cuts. In the other nodes of the branch-and-bound tree, priority of all

cuts is the same, i.e. they all are separated in every round.

There are two thresholds τ soft and τhard for the running time of the exact labeling algorithm.

If the running time for at least one pricing problem exceeds τ soft, after the column generation

convergence, cuts are not separated and branching is performed. If the running time exceeds

τhard, the labelling algorithm is interrupted and the rollback procedure (61) is executed: the cuts

added in the last separation round are deleted from the master, and branching is performed.

5.3. Safe dual bounds

An optimal dual solution returned by the restricted master problem is actually an approxi-

mation of a real one, as competitive LP solvers use floating-point arithmetic. Thus the sign of

the minimum reduced cost found by the a pricing problem can hardly be decided. This can lead

to premature termination or to endless loops (44). For most applications, no practical difficulty

occurs. However for some problems, wrong dual bound can be calculated. Vertex coloring and

bin packing are examples of such problems.

Our solver has an option to compute a numerically safe dual bound similarly to the method

proposed in (44). This approach can be applied in our solver if i) variables y are absent (i.e.

n2 = 0), and ii) all coefficients α are non-negative.

We use the property that a valid (Lagrangian) dual bound can be computed for any vector of

dual values. Given as a parameter a large integer constant K̃, we call the pricing problem with

modified dual values bK̃πic, i = 1, . . .m, bK̃νk+c, bK̃νk−c, k ∈ K. The dual values corresponding

to the cuts are modified in the same way. The modified cost of variable xj in the pricing problems

Cadernos do LOGIS-UFF L-2019-2 21

is equal to dK̃cje, j = 1, . . . , n1. This rounding procedure allows us to obtain a feasible dual

solution at the end of column generation convergence under two conditions given in the previous

paragraph. As the objective function of any modified pricing problem is integer, its solution value

can be computed exactly. The (Lagrangian) dual bound is then calculated in the usual way and

then multiplied by K̃−1. When the option to use safe dual bounds is activated (K̃ > 0), the

reduced cost tolerance of the LP solver is set to the minimum possible value (10−9 for CPLEX).

5.4. Branching

The user has the possibility to set the priority for each branching strategy he uses for his

application. The selection among branching candidates with the same priority is done using a

sophisticated hierarchical evaluation strategy similar to the one proposed in (73; 61). The idea is

to spend more time evaluating branching candidates in the lowest levels of the branch-and-bound

tree where each selection has a greater impact on the overall time, and spend less time as the level

increases, taking advantage of the history of previous evaluations. The following three evaluation

phases are used:

Phase 0: Up to a half of the candidates are chosen from history using pseudo-costs (if history is

not empty). The remaining candidates are chosen in a balanced way between all branching

strategies of the current priority. Within the same strategy, the candidates are chosen based

on the distance from its fractional value to the closest integer, the larger distance is better.

Phase 1: Evaluate the selected candidates from phase 0 by solving the current restricted master

LP modified for each created child node, without generating columns. Select the variables

with the maximum value of ∆LB1×∆LB2, where ∆LBi denotes the increase in the current

lower bound obtained for the ith child node, for i = 1, 2 (Product Rule, (3)).

Phase 2: Evaluate the selected candidates from phase 1 by solving the relaxation associated to

each created child node, including column generation with heuristic labelling for solving the

pricing problem. Cut generation is not applied in this phase. The best candidate is also

selected by the Product Rule.

The maximum number of candidates evaluated in phase ρ = 1, 2 in branch-and-bound node bbn

is equal to min{ζnumρ , TS(nbb) · ζestimρ }, where TS(nbb) is an estimation of the size of the subtree

rooted at the parent of node bbn (it is equal to infinity for the root). Calculation of estimation

TS(bbn) follows that of (50). See also (52) for a related work.

5.5. Primal heuristics

Restricted master and diving heuristics (77) are built-in to the solver to improve the primal

solution during the search. When used, these heuristics are executed at each branch-and-bound

node before branching. The first heuristic uses a MIP solver to solve the current restricted master

problem as a mixed-integer program with the time limit χrm. The second heuristic is the diving

Cadernos do LOGIS-UFF L-2019-2 22

heuristic with Limited Discrepancy Search (LDS). It is applied in branch-and-bound nodes of

depth at most χdiv. The diving heuristic uses two parameters χdisc and χdepth which correspond

to parameters maxDiscrepancy and maxDepth in (77). In each dive of the diving heuristic, we

iteratively fix a column with largest value in the fractional solution to one and then we solve the

resulting residual master problem with column generation. In the diving heuristic with LDS, one

does several dives. Thus, a search tree is formed in which backtracking is allowed. In each node

ndiv of the diving search tree, we keep a tabu list of columns forbidden to be fixed. Tabu list of a

child node is initialized with the current tabu list of the parent node (the initial tabu list at the

root is empty). After a backtrack to a node ndiv, we insert in its tabu list the column which was

fixed by the previous fixing decision in ndiv. An additional fixing decision in ndiv is allowed (i.e.

other child nodes of ndiv can be created) if the size of its tabu list does not exceed χdisc and the

depth of ndiv is not larger than χdepth.

5.6. Parameterization

Based on the description above, we list in Table 1 the solver parameters available to the user.

In addition the user may provide the following information to improve the solver performance.

• Designation of the first main resource which will be used for the bi-directional labelling.

• Priorities for branching strategies.

• Distance matrix between packing sets for defining initial ng-sets and for local search heuristic

separation of l-row rank-1 cuts with l ≥ 5.

Description Notation Default value(s)

Time thresholds for the labeling algorithm τ soft, τhard 10 sec., 20 sec.
Calculation of step sizes for buckets ψbuck, ψreduc 25, 1 (on)
Bi-directional search and bucket arc elimination φbidir, φelim 2, 1 (on)
Max. # of generated columns per iteration γexact, γheur 150, 30
Minimum stage for stabilization σstab 0 (everywhere)
Max. # of labels and paths in the enumeration ωlabels, ωroutes 106, 106

Max. total # of enumerated paths for MIP ωMIP 104

Initial and maximum size of ng-sets ηinit, ηmax 8, 8
Limited-memory rank-1 cuts parameters θnum, θrows, θmem 100, 5, 2
Cut generation tailing-off parameters δgap, δnum 2%, 3

Numerically safe dual bound multiplier K̃ -1 (off)
Strong branching parameters for phase 1 ζnum1 , ζestim1 100, 0.3
Strong branching parameters for phase 2 ζnum2 , ζestim2 3, 0.1
Restricted master heuristic χrm -1 (off)
Diving heuristic (with LDS) χdiv, χdepth, χdisc -1 (off), 0, 0

Table 1: Parameters of the solver available to the user and their default values

Cadernos do LOGIS-UFF L-2019-2 23

6. Computational Experiments

The generic BCP solver optimization algorithms were coded in C++. The interface to the

solver is implemented in Julia 0.6 language using JuMP (34) and LightGraphs packages. We also

used:

• BaPCod C++ library (81) which implements the BCP framework;

• the C++ code developed by Sadykov et al. (76) implementing the bucket graph based

labeling algorithm, bucket arc elimination procedure, path enumeration, and the separation

of limited-memory rank-1 cuts;

• CVRPSEP C++ library (55) which implements heuristic separation of rounded capacity

cuts;

• IBM CPLEX Optimizer version 12.8.0 as the LP solver in column generation and as the

solver for the enumerated MIPs.

• Boost C++ library version 1.55 (2)

• LEMON C++ library version 1.31 (1) for the bucket graph creation for the labeling algo-

rithm.

The experiments were run on a 2 Deca-core Ivy-Bridge Haswell Intel Xeon E5-2680 v3 server

running at 2.50 GHz. The 128 GB of available RAM was shared between 8 copies of the algorithm

running in parallel on the server. Each instance is solved by one copy of the algorithm using a

single thread.

In Table 2, we show computational results for 13 applications. The first column is the problem

acronym, second column refers to data sets, the third indicates the number of instances. Next

is the time limit per instance. The last three columns show the results obtained by our generic

solver, as well as by two other algorithms, those with the best (to our knowledge) published results

for the data set. For each algorithm, we give the number of instances solved within the time limit,

the average time in brackets (geometric mean time if the time limit is 10 hours or more), and its

reference. For instances not solved, the time limit is considered as the solution time. Best results

are marked in bold. The performance of our solver depends significantly on initial primal bounds

given by the user. In the experiments, we always used the same primal bounds as in the works

we compare with.

For each problem below we give details concerning the models and the parameterization em-

ployed, instances considered, initial primal bounds used, as well as analysis of computational

results.

Cadernos do LOGIS-UFF L-2019-2 24

Problem Data set # T.L. Gen. BCP Best Publ. 2nd Best

CVRP E-M (24; 25) 12 10h 12 (61s) 12 (49s) (61) 10 (432s) (27)
X (80) 58 60h 36 (147m) 34 (209m) (80) —

VRPTW Solomon Hardest (79) 14 1h 14 (5m) 13 (17m) (60) 9 (39m) (10)
Homberger 200 (40) 60 30h 56 (21m) 50 (70m) (60) 7 (-) (49)

HFVRP BaldacciMingozzi (9) 40 1h 40 (144s) 39 (287s) (64) 34 (855s) (9)

MDVRP Cordeau (28) 11 1h 11 (6m) 11 (7m) (64) 9 (25m) (27)

PDPTW RopkeCordeau (74) 40 1h 40 (5m) 33 (17m) (42) 32 (14m) (7)
LiLim (53) 30 1h 3 (56m) 23 (20m) (7) 18 (27m) (42)

TOP Chao class 4 (23) 60 1h 55 (8m) 39 (15m) (16) 30 (-) (37)

CTOP Archetti (5) 14 1h 13 (7m) 6 (35m) (4) 7 (34m) (5)

CPTP Archetti open (5) 28 1h 24 (9m) 0 (1h) (19) 0 (1h) (4)

VRPSL Bulhoes (19) 180 2h 159 (16m) 49 (90m) (19) —

GAP OR-Lib, type D (13) 6 2h 5 (40m) 5 (30m) (70) 5 (46m) (6)
Nauss (57) 30 1h 25 (23m) 1 (58m) (43) 0 (1h) (57)

BPP Falkenauer T (38) 80 10m 80 (16s) 80 (1s) (18) 80 (1s) (30)
Hard28 (78) 28 10m 28 (17s) 28 (4s) (30) 28 (7s) (15)
AI (31) 250 1h 160 (25m) 140 (28m) (83) 116 (35m) (15)
ANI (31) 250 1h 103 (35m) 97 (40m) (83) 67 (45m) (30)

VPP Classes 1,4,5,9 (22) 40 1h 38 (8m) 13 (50m) (45) 10 (53m) (18)

CARP Eglese (36) 24 30h 22 (36m) 22 (43m) (63) 10 (237m) (12)

Table 2: Generic solver vs best specific solvers on 13 problems.

Capacitated Vehicle Routing Problem (CVRP)

The model is given in Section 4.3. The parameterization of the solver is the following (values

different from defaults): τhard = 25 sec., ωroutes = 5 · 106, θmem = 0, ζestim1 = 0.2, ζnum2 = 5,

ζestim2 = 0.02, δgap = 1.5%. The distance matrix between packing sets corresponds to the distance

matrix between clients. The same matrix is used in all routing problems below, except CARP.

The considered E-M instances are the 12 hardest ones, those considered in (61). The considered

X instances are those with less than 400 customers. The number of vehicles for E-M instances is

fixed as it is usual in the literature. The number of vehicles is unbounded for X instances. The

same initial upper bounds are used as in the literature (61; 80).

The results show that our solver outperforms noticeably state-of-the-art on X instances. Re-

sults for E-M instances are comparable to the state-of-the-art. Note that the initial upper bound

for the hardest instance M-n200-k16 is different by 4 units from the optimum solution. This

difference introduce randomness to the running time of algorithms.

According to CVRPLIB (http://vrp.atd-lab.inf.puc-rio.br), in November 2018 there

were 55 open CVRP instances in the X set (80). We started long runs of the generic solver on the

most promising ones, using a specially calibrated parameterization. We could solve 6 instances

Cadernos do LOGIS-UFF L-2019-2 25

to optimality for the first time, as indicated in Table 3. Improved best known solutions are

underlined.

Instance Prev. BKS Root LB Nodes Total Time OPT

X-n284-k15 20226 20168 940 11.0 days 20215
X-n322-k28 29834 29731 1197 5.6 days 29834
X-n344-k43 42056 41939 2791 11.6 days 42050
X-n393-k38 38260 38194 1331 5.8 days 38260
X-n469-k138 221909 221585 8964 15.2 days 221824
X-n548-k50 86701 86650 337 2.0 days 86700

Table 3: Detailed results on the open instances solved.

Vehicle Routing Problem with Time Windows (VRPTW)

We use the same model as for the CVRP except that an additional main resource is defined

which represents the time. Different bounds on the consumption of the time resource prevent us

from exploiting forward-backward path symmetry in the pricing.

The considered Solomon instances (all with 100 customers) are the hardest ones according to

(60). As it is standard in the literature, we divide the instances in two groups. First group contains

instances of type C1, RC1, and R1. For this group of instances, the first main resource for the

bi-directional labelling is the capacity resource. Second group contains instances of type C2, RC2,

R2. For the second group of instances, capacity resource is not used, and the feasibility related

to the vehicle capacity is guaranteed by the rounded capacity cuts, separated both for fractional

and integer solutions of the master problem. Therefore, those cuts becomes essential constraints

and the sufficient condition for enumeration given in Section 3.3 is not verified (paths visiting the

same customers in distinct orders may have different coefficients in some RCC). However, it is

still possible to show that the enumeration procedure is valid. The same initial upper bounds are

used as for the algorithm in (60).

The parameterization of the solver for the first group of instances is τ soft = 5 sec., τhard = 10

sec., φbidir = 1, ηmax = 16, θrows = 7, θmem = 1, ωroutes = 107, ζnum0 = 50, ζestim1 = 0.1,

ζestim2 = 0.1, δgap = 1.5%. The parameterization for the second group of instances is τhard = 30

sec., φbidir = 1, ηmax = 16, θmem = 1, ωroutes = 5 · 106, ζnum1 = 50, ζestim1 = ∞, ζestim2 = ∞,

δgap = 1.5%.

The results in Table 2 show that our solver outperformed significantly the algorithm proposed

in (60). It is more than three times faster on average and could solve 7 more instances within

the time limit. All Solomon instances with 100 customers are solved in less than 5 minutes each,

except the hardest instance R208 which is solved in 37 minutes. The latter was solved in about

17 hours by the algorithm in (60).

Cadernos do LOGIS-UFF L-2019-2 26

Heterogeneous Fleet Vehicle Routing Problem (HFVRP)

The model is given in Section 4.4. The parameterization of the solver is the following: τ soft = 6

sec., τhard = 15 sec., ωroutes = 5 · 106, θmem = 1, ζestim1 = 0.2, ζnum2 = 5, ζestim2 = 0.02. The

branching on the number of paths for each vehicle type has the highest priority. Other branching

strategies have the same priority.

We use the instances with 50-100 clients proposed in (9). They include instances with lim-

ited and unlimited fleet, with and without fixed vehicle cost, and with vehicle dependent and

independent routing costs. The same initial upper bounds are used as in (64). Our solver is

significantly outperforms the algorithm from (9). It also has a better performance than a recent

branch-cut-and-price algorithm specific for that problem (64).

Multi-Depot Vehicle Routing Problem (MDVRP)

We use a model similar to the one used on HFVRP, defining a graph Gk for every depot k ∈ K.

Variables associated with edges incident to a depot k are mapped to the corresponding arcs in

graph Gk. Variables associated with edges between customers are mapped to corresponding arcs

in all graphs. The same parameterization and the same priorities for branching as for the HFVRP

are used.

We use instances proposed in (28). Only instances without distance constraints are considered,

so there is a single capacity resource. The same initial upper bounds are used as in (64). The

solver obtained a performance similar to (64) and significantly better than (27).

Pickup and Delivery Problem with Time Windows (PDPTW)

The model is given in Section 4.6. The parameterization of the solver is the following: τ soft = 5

sec., τhard = 10 sec., ψbuck = 200, ωlabels = 5 · 105, ωroutes = 2.5 · 106, ωMIP = 7000, δnum = 2,

ζestim1 = 30, ζestim1 = 1.0, ζnum2 = 2. Diving heuristic is used with parameters χdiv = 10, χdepth =

∞, χdisc = 1.

The convention in PDPTW literature is to first minimize the number of routes, then the

minimize the transportation cost. So, we add the constant 10,000 to the cost of arcs leaving the

depot. The same initial upper bounds are used as in (7). Results for this problem are mixed.

Worse performance for Li& Lim instances can be explained by the fact that the our solver does

not incorporate some labeling algorithm acceleration techniques specific to the PDPTW. For the

Ropke & Cordeau instances however, generic state-of-the-art BCP elements mitigate the effect

of lacking ad-hoc enhancements. Employing diving heuristic is important here as initial upper

bounds are not tight for some instances.

Team Orienteering Problem (TOP)

The model is given in Section 4.5. The parameterization of the solver is the following: τ soft = 5

sec., τhard = 10 sec., ψbuck = 200, φbidir = 1, ωlabels = 5·105, ωroutes = 2.5·106, θmem = 1, δnum = 2,

Cadernos do LOGIS-UFF L-2019-2 27

ζestim1 = 50, ζestim1 = 1.0. Both restricted master and diving heuristics are used with parameters

χrm = 1 sec., χdiv = 0, χdepth =∞, χdisc = 1.

No initial upper bound is defined, so using heuristics is important. Instances of class 4, the

most difficult one according to (16), are considered for TOP. Our solver clearly outperforms the

state-of-the-art on this problem. Its advantage can be explained by the fact that some important

recent improvements in BCP algorithms for variants like CVRP and VRPTW were not yet adapted

and used in TOP, possibly due to the complexity of their implementation.

Capacitated Team Orienteering Problem (CTOP)

The same model as for the TOP is used, except that an additional capacity resource is consid-

ered. The first main resource for the bi-directional labelling is the time resource. Pricing problem

can be difficult for the instances considered. Therefore, we used a special parameterization for

the number of buckets to be able to solve them in a reasonable time. Bucket arc elimination

procedure and thus route enumeration are not used due to performance issues. Rank-1 cuts are

also not separated due to the difficulty of the pricing problem.

The parameterization of the solver is the following: τ soft = 5 sec., τhard = 10 sec., ψbuck =

1000, φbidir = 1, φelim = 0 (off), σstab = 1, ηmax = 30, θrows = −1 (off), δgap = 1.5%, ζestim1 = 50,

ζestim1 = 1.0. Diving heuristic is used with parameters χdiv = 0, χdepth =∞, χdisc = 1.

No initial upper bound is defined. We used all instances in Set 1 from (5). We also used only

open instances in Set 2 from (5) (which were not solved by Archetti et al. (4)), as Set 2 contains

easier instances (with a reduced vehicle capacity and a reduced time limit). We have not solved

only one instance: “p09”. All other instances were solved to optimality in less than 15 minutes

each, seven of them for the first time.

Capacitated Profitable Tour Problem (CPTP)

The same model as for the CTOP, except that i) the only resource is the vehicle capacity,

ii) the objective is the difference between the total profit and the transportation cost. The

parameterization of the solver is the following: τ soft = 5 sec., τhard = 10 sec., ψbuck = 200,

φbidir = 1, σstab = 1, ωlabels = 5 · 105, ωroutes = 2.5 · 106, ηmax = 30, θmem = 1, δgap = 1.5%,

ζestim1 = 50, ζestim1 = 1.0.

Only open instances from (5) are considered, which could not be solved by Bulhoes et al. (19).

The same initial upper bounds were used as for the branch-and-price algorithm in (19). Note that

only one of them was improved: for instance “p13-4-200” the optimum value is 304.15, whereas

the best known solution is 303.18. So the heuristic suggested in (19) is of a very good quality.

Among 28 open instances of the CPTP, we solved to optimality 24 within 1 hour. Two more

instances “p13-4-200” and “p10-20-200” were solved within 2 hours each. The only remaining

open instances are now “p15-15-200”, and “p16-20-200”.

Cadernos do LOGIS-UFF L-2019-2 28

VRP with Service Level constraints (VRPSL)

VRPSL is a generalisation of CVRP in which a service weight is defined for each customer.

For each predefined group of customers, total service weight of visited customers should not be

below a threshold. The model contains edge and y variables as for the TOP. For each group,

a knapsack constraint over y variables is defined. Branching is both on y and edge variables.

The parameterization of the solver is the following: τ soft = 3 sec., τhard = 6 sec., ψbuck = 200,

ωlabels = 2 · 105, ηmax = 30, θrows = 4, θmem = 1, δgap = 1.5%, ζnum1 = 50, ζestim1 = 1.0.

The instances proposed in (19) are considered. The same initial upper bounds were used

as in (19). None of them was improved. Our solver outperformed largely the branch-and-price

algorithm by Bulhoes et al. (19). The reason is that the latter does not use many state-of-the-

art techniques for routing problems. Performance of our solver can probably be improved by

separating valid inequalities for the knapsack constraints.

Generalized Assignment Problem (GAP)

The model is given in Section 4.1. We used 6 classic OR-Library instances of the most

difficult type D with up to 20 machines and 200 tasks. Also we used instances by Nauss (57)

with |T | = 90, 100 and |K| = 25, 30. For the classic instances, the parameterization of the solver

is the following: ψbuck = 200, ψreduc = 0 (off), φbidir = 1, γexact = 10, γheur = 10, ωMIP = 4000,

ηinit = 0, ηmax = 0, θrows = 3. For Nauss instances, the parameterization of the solver is the

following: ψbuck = 100, ψreduc = 0 (off), φbidir = 1, γexact = 10, γheur = 10, ωlabels = 105,

ωroutes = 2 · 105, ωMIP = 4000, ηinit = 0, ηmax = 0, θrows = 4.

For OR-Library instances, we took best known solution values augmented by 1 as initial upper

bounds. Performance of our solver is comparable to the state-of-the-art. Both “competitors” (70)

and (6) solved the same number of instances to optimality in similar time. In Table 2, times of (70)

and (6) are adjusted according to computer speeds. Note that our solver is the first algorithm in

the literature which solves the pricing problem as the resource constrained shortest path problem.

Although it is slower than specialised knapsack solvers, it supports rank-1 cuts and enumeration.

Initial bounds for Nauss instances were calculated by us using problem specific strong diving

heuristic from (77). This heuristic is based on classic column generation for the GAP, in which

the pricing problem is solved by the knapsack solver (68). The heuristic time is included in the

reported time. Our solver is much more efficient than the algorithm by Nauss (57) and the MIP

formulation for the GAP solved by Gurobi. Note that our solver obtains particularly good results

for instances with relatively small number of tasks per machine, as in this case path enumeration

procedure is very efficient. For instances with large number of tasks per machine our solver is less

efficient. In particular, a more advanced stabilisation technique is required for such instances, as

discussed in (65).

Cadernos do LOGIS-UFF L-2019-2 29

Bin Packing Problem (BPP)

The model is given in Section 4.2. The parameterization of the solver is the following: ψbuck =

200, ψreduc = 0 (off), φbidir = 1, γexact = 100, γheur = 100, σstab = 2, ωroutes = 2 ·106, ωMIP = 105,

ηinit = 0, ηmax = 0, θrows = 4, δnum = 5, K̃ = 1010, ζnum1 = 20, ζnum2 = 1. Diving heuristic with

parameters χdiv = 10, χdepth = 0, χdisc = 0 is used for all instances except set ANI.

We give smaller priority for the Ryan and Foster branching and larger priority for the branching

over the accumulated resource consumption. The latter showed to be so effective that Ryan and

Foster rule was never used in our experiments. For each instance, we use initial primal bound

which is equal to the rounded up value of the column generation dual bound plus 1 unit (there is

a long-standing conjecture that the optimal solution of a BPP instance is never larger than this).

Solutions with these objective values are easily obtainable by simple heuristics.

Our solver obtains the best results for the two most difficult instance classes AI and ANI. For

other less difficult instances, our algorithm is slower than the state-of-the-art. However, it can

solve all instances to optimality in a relatively small time. Note that the algorithm of Clautiaux

et al. (26) showed better results for the class AI. However, the authors communicated to us that

they discovered an issue with their code. Therefore, their results are not included in Table 2.

The bottleneck of our algorithm for solving instances of classes AI and ANI with 600 items or

more is the LP solver. For such instances, very often when the pricing problem finds columns with

negative reduced cost, LP solver does not include them in the basis. This happens because the

absolute value of the reduced cost is smaller than the minimum possible reduced cost tolerance

of the LP solver. Thus, the final dual solution of column generation is not feasible, and the

Lagrangian bound obtained by the safe procedure is weaker than it can potentially be.

Vector Packing Problem (VPP)

The model is given in Section 4.2. The parameterization of the solver is the following: ψbuck =

2000, ψreduc = 0 (off), φbidir = 1, γexact = 100, γheur = 100, σstab = 1, ωlabels = 105, ωMIP = 105,

ηinit = 0, ηmax = 0, θrows = −1 (off), ζnum2 = 1. We use diving heuristic with parameters χdiv = 0,

χdepth = 2, χdisc = 3.

For the VPP, we use an additional pricing heuristic in which at most 8 labels with the best

reduced cost are kept in each bucket. This heuristic helps us to solve some difficult instances.

This happens because exact pricing solution time can be very different in two cases: i) when there

are negative reduced cost paths to be found, and ii) when there are no such paths. Very rarely,

the pricing solution time can be orders of magnitude larger in the first case, even if these two

cases occur in consecutive column generation iterations. This behaviour of the labelling algorithm

should be further investigated.

We do not use initial upper bounds. We consider only largest instances from the literature

with 200 items and only with 2 resources. We use instances of the most difficult, according

to (45), classes 1, 4, 5, and 9. Other instances are significantly easier, all of them are solved in the

Cadernos do LOGIS-UFF L-2019-2 30

literature. Our solver outperforms largely the algorithms in the literature. Only two instances

were not solved to optimality. These are instances 09 200 05 and 09 200 06. Other instances are

solved at the root node. 32 from 40 instances are solved in less than 5 minutes.

Capacitated Arc Routing Problem (CARP)

The model is defined in Section 4.7. The parameterization of the solver is the following:

τ soft = 6 sec., τhard = 15 sec., ψbuck = 50, γexact = 50, γheur = 300, σstab = 1, ωlabels = 5 · 105,

θnum = 50, δgap = 1%, δnum = 5, ζestim1 = 1.0, ζnum2 = 5. In the distance matrix for ng-sets,

the distance between two required edges is defined as the sum of costs of four paths between

midpoints of the edges. Each path is the shortest path starting from a given vertex incident to

the first edge and ending at a given vertex incident to the second edge.

The branching is done on the aggregation of x variables corresponding to node degrees in the

original graph or on the aggregation of x variables corresponding to whether required two edges

are served immediately one after another by the same route or not. The same priority is used for

both branching strategies.

The Eglese dataset (36) is standard in the literature and it is used in all recent works on the

CARP. We have used the same initial upper bounds as in (63). The performance of our solver is

similar to the most recent exact algorithm (63) for the problem. Other algorithms in the literature

are significantly less efficient. The generality of our solver opens a way to quickly obtain excellent

computational results for many variants of the arc routing problems.

7. Conclusions

We proposed a new generic way of modeling VRPs and related problems, so that they can

be solved by a BCP algorithm that already includes most state-of-the-art elements introduced

for the most classical VRP variants. It combines existing modeling concepts, like the use of

RCSPs for defining the valid routes, with new ones, the most important being packing sets. The

experiments show that the generic solver has a performance either comparable or better than the

specific algorithms for all VRP variants tested. The cases where the performance was much better

can be explained by the fact that previous works on some problems did not use some of those

advanced elements, possibly due to the complexity of their implementation. However, if generic

VRP solvers become publicly available, we believe that their use may become standard, at least

for the purpose of having baseline results to be compared with results of proposed specialized

algorithms.

The presented generic solver is available for academic use at https://vrpsolver.

math.u-bordeaux.fr/. The optimization algorithms and a Julia–JuMP (35) user interface are

being given as pre-compiled docker image. Modeling a typical VRP variant, like those in our

tests, requires around 100 lines of Julia code (not counting input/output code). This means

that a user can already have a good working algorithm in a day. After that, several days of

Cadernos do LOGIS-UFF L-2019-2 31

computational experiments for parameter tuning may yield an improved performance. However,

there are variants where additional work on separation routines for problem specific cuts may be

needed for top performance.

Furthermore, we believe that there is plenty of room for “creative modeling”, where users may

find original ways of fitting new problems into the proposed model. In fact, as already demon-

strated on generalized assignment problem and on bin/vector packing problems, not only VRP

variants can be efficiently treated. It may be also possible to model of problems from scheduling,

from network design and from other discrete optimization subareas. As the VRP technology

available in the solver is quite advanced, there is a chance of obtaining a good performance.

As future work, we plan to further extend the modeling capabilities of the VRP solver. We

believe that the most promising course for that is to add the possibility of using other types of

resources in the models. This may include resources with arc consumption dependent on its own

accumulated consumption or even dependent on accumulated consumption of other resources,

resources with soft or multiple interval limits, non-linear and stochastic resources, and others, as

discussed in (46) and in (58). However, devising and implementing algorithms that support any

of those more complex resources, in an efficient way and preserving the compatibility with all the

existing features of our solver, will be a major challenge.

Acknowledgements

We would like to thank Teobaldo Bulhoes and Guillaume Marques for a large part of the

implementation of the Julia–JuMP interface to the solver; Teobaldo Bulhoes, Guillaume Marques

and Eduardo Queiroga for implementing, over that interface, the models corresponding to the

examples of this paper; and Laurent Facq for a general support of the computing environment.

Experiments presented in this paper were carried out using the PlaFRIM (Federative Platform

for Research in Computer Science and Mathematics), created under the Inria PlaFRIM devel-

opment action with support from Bordeaux INP, LABRI and IMB and other entities: Conseil

Régional d’Aquitaine, Université de Bordeaux, CNRS and ANR in accordance to the “Programme

d’Investissements d’Avenir”.

References

[1] LEMON: Library for Efficient Modeling and Optimization in Networks, 2014.

[2] Boost C++ libraries, 2019.

[3] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitat

Berlin, 2007.

Cadernos do LOGIS-UFF L-2019-2 32

[4] C. Archetti, N. Bianchessi, and M.G. Speranza. Optimal solutions for routing problems with

profits. Discrete Applied Mathematics, 161(4–5):547–557, 2013.

[5] C. Archetti, D. Feillet, A. Hertz, and M G Speranza. The capacitated team orienteering and

profitable tour problems. Journal of the Operational Research Society, 60(6):831–842, Jun

2009.

[6] Pasquale Avella, Maurizio Boccia, and Igor Vasilyev. A computational study of exact knap-

sack separation for the generalized assignment problem. Computational Optimization and

Applications, 45(3):543–555, 2010.

[7] Roberto Baldacci, Enrico Bartolini, and Aristide Mingozzi. An exact algorithm for the pickup

and delivery problem with time windows. Operations Research, 59(2):414–426, 2011.

[8] Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An exact algorithm for the

vehicle routing problem based on the set partitioning formulation with additional cuts. Math-

ematical Programming, 115:351–385, 2008.

[9] Roberto Baldacci and Aristide Mingozzi. A unified exact method for solving different classes

of vehicle routing problems. Mathematical Programming, 120(2):347–380, 2009.

[10] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New route relaxation and pricing

strategies for the vehicle routing problem. Operations Research, 59(5):1269–1283, 2011.

[11] M.L. Balinski and R.E. Quandt. On an integer program for a delivery problem. Operations

Research, 12(2):300–304, 1964.

[12] Enrico Bartolini, Jean-François Cordeau, and Gilbert Laporte. Improved lower bounds

and exact algorithm for the capacitated arc routing problem. Mathematical Programming,

137(1):409–452, Feb 2013.

[13] J. E. Beasley. OR-Library: Distributing test problems by electronic mail. The Journal of

the Operational Research Society, 41(11):1069–1072, 1990.

[14] J. Belenguer and E. Benavent. The capacitated arc routing problem: Valid inequalities and

facets. Computational Optimization & Applications, 10(2):165–187, 1998.

[15] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-dimensional

stock cutting and two-dimensional two-stage cutting. European Journal of Operational Re-

search, 171(1):85 – 106, 2006.

[16] Nicola Bianchessi, Renata Mansini, and M. Grazia Speranza. A branch-and-cut algorithm

for the team orienteering problem. International Transactions in Operational Research,

25(2):627–635, 2018.

Cadernos do LOGIS-UFF L-2019-2 33

[17] C. Bode and S. Irnich. Cut-first branch-and-price-second for the capacitated arc-routing

problem. Operations Research, 60(5):1167–1182, 2012.

[18] Filipe Brandão and João Pedro Pedroso. Bin packing and related problems: General arc-flow

formulation with graph compression. Computers & Operations Research, 69:56 – 67, 2016.

[19] Teobaldo Bulhoes, Minh Hoàng Hà, Rafael Martinelli, and Thibaut Vidal. The vehicle routing

problem with service level constraints. European Journal of Operational Research, 265(2):544

– 558, 2018.

[20] Teobaldo Bulhões, Artur Pessoa, Fábio Protti, and Eduardo Uchoa. On the complete set

packing and set partitioning polytopes: Properties and rank 1 facets. Operations Research

Letters, 46(4):389–392, 2018.

[21] Teobaldo Bulhoes, Ruslan Sadykov, and Eduardo Uchoa. A branch-and-price algorithm for

the minimum latency problem. Computers & Operations Research, 93:66–78, May 2018.

[22] Alberto Caprara and Paolo Toth. Lower bounds and algorithms for the 2-dimensional vector

packing problem. Discrete Applied Mathematics, 111(3):231 – 262, 2001.

[23] I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. The team orienteering problem.

European Journal of Operational Research, 88(3):464 – 474, 1996.

[24] N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Operational

Research Quarterly, 20:309–318, 1969.

[25] N. Christofides, A. Mingozzi, and P. Toth. Combinatorial Optimization, chapter The vehicle

routing problem, pages 315–338. Wiley, Chichester, 1979.

[26] François Clautiaux, Säıd Hanafi, Rita Macedo, Marie Émilie Voge, and Cláudio Alves. Iter-

ative aggregation and disaggregation algorithm for pseudo-polynomial network flow models

with side constraints. European Journal of Operational Research, 258(2):467 – 477, 2017.

[27] Claudio Contardo and Rafael Martinelli. A new exact algorithm for the multi-depot vehicle

routing problem under capacity and route length constraints. Discrete Optimization, 12:129

– 146, 2014.

[28] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search heuristic for

periodic and multi-depot vehicle routing problems. Networks, 30(2):105–119, 1997.

[29] G. Dantzig and J. Ramser. The truck dispatching problem. Management science, 6(1):80–91,

1959.

[30] Maxence Delorme and Manuel Iori. Enhanced pseudo-polynomial formulations for bin pack-

ing and cutting stock problems. INFORMS Journal on Computing, Forthcoming, 2018.

Cadernos do LOGIS-UFF L-2019-2 34

[31] Maxence Delorme, Manuel Iori, and Silvano Martello. Bin packing and cutting stock prob-

lems: Mathematical models and exact algorithms. European Journal of Operational Research,

255(1):1–20, 2016.

[32] Guy Desaulniers, Jacques Desrosiers, Marius M Solomon, François Soumis, Daniel Villeneuve,

et al. A unified framework for deterministic time constrained vehicle routing and crew

scheduling problems. In Fleet management and logistics, pages 57–93. Springer, 1998.

[33] Guy Desaulniers, François Lessard, and Ahmed Hadjar. Tabu search, partial elementar-

ity, and generalized k-path inequalities for the vehicle routing problem with time windows.

Transportation Science, 42(3):387–404, 2008.

[34] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical

optimization. SIAM Review, 59(2):295–320, 2017.

[35] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for mathematical

optimization. SIAM Review, 59(2):295–320, 2017.

[36] R. W. Eglese and L. Y. O. Li. Efficient routeing for winter gritting. Journal of the Operational

Research Society, 43(11):1031–1034, 1992.

[37] Racha El-Hajj, Duc-Cuong Dang, and Aziz Moukrim. Solving the team orienteering problem

with cutting planes. Computers & Operations Research, 74:21 – 30, 2016.

[38] Emanuel Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of

Heuristics, 2:5–30, 1996.

[39] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão, Marcelo Reis,

Eduardo Uchoa, and Renato F. Werneck. Robust branch-and-cut-and-price for the capaci-

tated vehicle routing problem. Mathematical Programming, 106(3):491–511, 2006.

[40] Hermann Gehring and Jörg Homberger. Parallelization of a two-phase metaheuristic for

routing problems with time windows. Journal of Heuristics, 8(3):251–276, 2002.

[41] Sylvie Gélinas, Martin Desrochers, Jacques Desrosiers, and Marius M Solomon. A new

branching strategy for time constrained routing problems with application to backhauling.

Annals of Operations Research, 61(1):91–109, 1995.

[42] Timo Gschwind, Stefan Irnich, Ann-Kathrin Rothenbächer, and Christian Tilk. Bidirectional

labeling in column-generation algorithms for pickup-and-delivery problems. European Journal

of Operational Research, 266(2):521 – 530, 2018.

[43] LLC Gurobi Optimization. Gurobi optimizer reference manual, version 7.5, 2017.

Cadernos do LOGIS-UFF L-2019-2 35

[44] Stephan Held, William Cook, and Edward C. Sewell. Maximum-weight stable sets and safe

lower bounds for graph coloring. Mathematical Programming Computation, 4(4):363–381,

2012.

[45] Katrin Heßler, Timo Gschwind, and Stefan Irnich. Stabilized branch-and-price algorithms

for vector packing problems. European Journal of Operational Research, 271(2):401 – 419,

2018.

[46] Stefan Irnich. Resource extension functions: Properties, inversion, and generalization to

segments. OR Spectrum, 30(1):113–148, 2008.

[47] Stefan Irnich, Guy Desaulniers, Jacques Desrosiers, and Ahmed Hadjar. Path-reduced costs

for eliminating arcs in routing and scheduling. INFORMS Journal on Computing, 22(2):297–

313, 2010.

[48] Mads Jepsen, Bjorn Petersen, Simon Spoorendonk, and David Pisinger. Subset-row in-

equalities applied to the vehicle-routing problem with time windows. Operations Research,

56(2):497–511, 2008.

[49] B. Kallehauge, J. Larsen, and O.B.G. Madsen. Lagrangian duality applied to the vehicle

routing problem with time windows. 33(5):1464–1487, 2006.

[50] O Kullmann. Handbook of Satisfiability, chapter Fundaments of branching heuristics, pages

205–244. IOS Press, Amsterdam, 2009.

[51] G. Laporte and Y. Nobert. A branch and bound algorithm for the capacitated vehicle routing

problem. Operations-Research-Spektrum, 5(2):77–85, Jun 1983.

[52] Pierre Le Bodic and George Nemhauser. An abstract model for branching and its application

to mixed integer programming. Mathematical Programming, 166(1):369–405, Nov 2017.

[53] Haibing Li and Andrew Lim. A metaheuristic for the pickup and delivery problem with time

windows. International Journal on Artificial Intelligence Tools, 12(02):173–186, 2003.

[54] Humberto Longo, Marcus Poggi De Aragao, and Eduardo Uchoa. Solving capacitated arc

routing problems using a transformation to the cvrp. Computers & Operations Research,

33(6):1823–1837, 2006.

[55] J. Lysgaard. CVRPSEP: A package of separation routines for the capacitated vehicle routing

problem. Aarhus School of Business, Department of Management Science and Logistics, 2003.

[56] Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new branch-and-cut algorithm

for the capacitated vehicle routing problem. Mathematical Programming, 100(2):423–445, Jun

2004.

Cadernos do LOGIS-UFF L-2019-2 36

[57] Robert M. Nauss. Solving the generalized assignment problem: An optimizing and heuristic

approach. INFORMS Journal on Computing, 15(3):249–266, 2003.

[58] Axel Parmentier. Algorithms for non-linear and stochastic resource constrained shortest

path. Mathematical Methods of Operations Research, 89(2):281–317, 2019.

[59] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-and-price for capacitated

vehicle routing. In Proceedings of the XVII IPCO, volume 8494 of Lecture Notes in Computer

Science, pages 393–403. Springer, 2014.

[60] Diego Pecin, Claudio Contardo, Guy Desaulniers, and Eduardo Uchoa. New enhancements

for the exact solution of the vehicle routing problem with time windows. INFORMS Journal

on Computing, 29(3):489–502, 2017.

[61] Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved branch-cut-and-

price for capacitated vehicle routing. Mathematical Programming Computation, 9(1):61–100,

2017.

[62] Diego Pecin, Artur Pessoa, Marcus Poggi, Eduardo Uchoa, and Haroldo Santos. Limited

memory rank-1 cuts for vehicle routing problems. Operations Research Letters, 45(3):206 –

209, 2017.

[63] Diego Pecin and Eduardo Uchoa. Comparative analysis of capacitated arc routing formula-

tions for designing a new branch-cut-and-price algorithm. Transportation Science, (Forth-

coming), 2019.

[64] Artur Pessoa, Ruslan Sadykov, and Eduardo Uchoa. Enhanced branch-cut-and-price algo-

rithm for heterogeneous fleet vehicle routing problems. European Journal of Operational

Research, 270:530–543, 2018.

[65] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. Automation

and combination of linear-programming based stabilization techniques in column generation.

INFORMS Journal on Computing, 30(2):339–360, 2018.

[66] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. A generic exact

solver for vehicle routing and related problems. In Andrea Lodi and Viswanath Nagarajan,

editors, Integer Programming and Combinatorial Optimization, volume 11480, pages 354–369.

Springer, 2019.

[67] Bjørn Petersen, David Pisinger, and Simon Spoorendonk. Chvátal-gomory rank-1 cuts used

in a dantzig-wolfe decomposition of the vehicle routing problem with time windows. In The

Vehicle Routing Problem: Latest Advances and New Challenges, pages 397–419. Springer,

2008.

Cadernos do LOGIS-UFF L-2019-2 37

[68] David Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Research,

45(5):758–767, 1997.

[69] M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust branch-and-cut-

and-price. In L. Wolsey, editor, Annals of Mathematical Programming in Rio, pages 56–61,

Búzios, Brazil, 2003.

[70] Marius Posta, Jacques A. Ferland, and Philippe Michelon. An exact method with vari-

able fixing for solving the generalized assignment problem. Computational Optimization and

Applications, 52:629–644, 2012.

[71] Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dynamic

programming for the elementary shortest path problem with resource constraints. Discrete

Optimization, 3(3):255 – 273, 2006.

[72] Roberto Roberti and Aristide Mingozzi. Dynamic ng-path relaxation for the delivery man

problem. Transportation Science, 48(3):413–424, 2014.

[73] S. Røpke. Branching decisions in branch-and-cut-and-price algorithms for vehicle routing

problems. Presentation in Column Generation 2012, 2012.

[74] Stefan Ropke and Jean-François Cordeau. Branch and cut and price for the pickup and

delivery problem with time windows. Transportation Science, 43(3):267–286, 2009.

[75] D. M. Ryan and B. A. Foster. An integer programming approach to scheduling. In

A. Wren, editor, Computer Scheduling of Public Transport: Urban Passenger Vehicle and

Crew Scheduling, pages 269–280. North-Holland, 1981.

[76] Ruslan Sadykov, Eduardo Uchoa, and Artur Pessoa. A bucket graph based labeling algorithm

with application to vehicle routing. Technical Report L-2017-7, Cadernos do LOGIS-UFF,

Niterói, Brazil, October 2017.

[77] Ruslan Sadykov, François Vanderbeck, Artur Pessoa, Issam Tahiri, and Eduardo Uchoa.

Primal heuristics for branch-and-price: the assets of diving methods. INFORMS Journal on

Computing, 31(2):251–267, 2019.

[78] J. E. Schoenfield. Fast, exact solution of open bin packing problems without linear program-

ming. Technical report, US Army Space and Missile Defense Command, 2002.

[79] Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations Research, 35(2):254–265, 1987.

[80] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Anand Subramanian, and Thibaut

Vidal. New benchmark instances for the capacitated vehicle routing problem. European

Journal of Operational Research, 257(3):845–858, 2017.

Cadernos do LOGIS-UFF L-2019-2 38

[81] François Vanderbeck, Ruslan Sadykov, and Issam Tahiri. BaPCod — a generic Branch-And-

Price Code, 2018.

[82] François Vanderbeck and Laurence A Wolsey. Reformulation and decomposition of integer

programs. In 50 Years of Integer Programming 1958-2008, pages 431–502. Springer, 2010.

[83] Laguna Wei, Zhixing Luo, Roberto Baldacci, and Andrew Lim. A new branch-and-price-and-

cut algorithm for one-dimensional bin-packing problems. INFORMS Journal on Computing,

Forthcoming, 2019.

