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Capacitated Vehicle Routing Problem (CVRP)

Undirected graph G′ = (V,E), V = {0, . . . , n}, 0 is the depot,
V+ = {1, . . . , n} are the customers ; positive cost ce, e ∈ E ;
positive demand di, i ∈ V+ ; vehicle capacity Q.

Find a minimum cost set of routes, starting and ending at the
depot, visiting all customers and such that the sum of the
demands of the customers in a route does not exceed vehicle
capacity.
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Capacitated Vehicle Routing Problem (CVRP)

Undirected graph G′ = (V,E), V = {0, . . . , n}, 0 is the depot,
V+ = {1, . . . , n} are the customers ; positive cost ce, e ∈ E ;
positive demand di, i ∈ V+ ; vehicle capacity Q.

Find a minimum cost set of routes, starting and ending at the
depot, visiting all customers and such that the sum of the
demands of the customers in a route does not exceed vehicle
capacity.
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Capacitated Vehicle Routing Problem (CVRP) :
Compact Formulation

Undirected graph G′ = (V,E), V = {0, . . . , n}, 0 is the
depot, V+ = {1, . . . , n} are the customers ; positive cost ce,
e ∈ E ; positive demand di, i ∈ V + ; vehicle capacity Q.
Find a minimum cost set of routes, starting and ending at
the depot, visiting all customers and such that the sum of
the demands of the customers in a route does not exceed
vehicle capacity.

Min
∑
e∈E

cexe (1a)

S.t.
∑

e∈δ(i)
xe = 2, i ∈ V +; (1b)

∑
e∈δ(S)

xe ≥ 2
⌈
d(S)
Q

⌉
, S ⊆ V +; (1c)

xe ∈ Z+, e ∈ E. (1d)
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Capacitated Vehicle Routing Problem (CVRP) : graph
Single graph
G = (V,A), A = {(i, j), (j, i) : {i, j} ∈ E}, vsource = vsink = 0 ;
R = RM = {1} ; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0) ;
li,1 = 0, ui,1 = Q, i ∈ V ;
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Capacitated Vehicle Routing Problem (CVRP) : solution
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VRPSolver Model for CVRP

Formulation
Integer variables xe, e ∈ E.

Min
∑
e∈E

cexe (2a)

S.t.
∑

e∈δ(i)
xe = 2, i ∈ V+. (2b)

L = d
∑n

i=1 di/Qe, U = n ; M(xe) = {(i, j), (j, i)},
e = {i, j} ∈ E.
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Open Vehicle Routing Problem (OVRP)

Directed graph G′ = (V,A′), V = {0, . . . , n}, 0 is the depot,
V+ = {1, . . . , n} are the customers and A′ have no arcs ending at
the depot ; positive cost ca, a ∈ A′ ; positive demand di, i ∈ V+ ;
vehicle capacity Q.

Find a minimum cost set of routes, starting at the depot, visiting
all customers such that the sum of the demands of the customers
in a route does not exceed vehicle capacity.
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Open Vehicle Routing Problem (OVRP)

Directed graph G′ = (V,A′), V = {0, . . . , n}, 0 is the depot,
V+ = {1, . . . , n} are the customers and A′ have no arcs ending at
the depot ; positive cost ca, a ∈ A′ ; positive demand di, i ∈ V+ ;
vehicle capacity Q.

Find a minimum cost set of routes, starting at the depot, visiting
all customers such that the sum of the demands of the customers
in a route does not exceed vehicle capacity.
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Open Vehicle Routing Problem (OVRP) :
Compact Formulation

Directed graph G′ = (V,A′), V = {0, . . . , n}, 0 is the depot,
V+ = {1, . . . , n} are the customers and A′ have no arcs
ending at the depot ; positive cost ca, a ∈ A′ ; positive
demand di, i ∈ V+ ; vehicle capacity Q.
Find a minimum cost set of routes, starting at the depot,
visiting all customers such that the sum of the demands of
the customers in a route does not exceed vehicle capacity.

Min
∑
a∈A′

caxa (3a)

S.t.
∑

a∈δ−(i)
xa = 1, i ∈ V +; (3b)

∑
a∈δ−(S)

xa ≥
⌈
d(S)
Q

⌉
, S ⊆ V +; (3c)

xa ∈ Z+, a ∈ A′. (3d)
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How to Adapt the CVRP Model for the OVRP?

Single graph
G = (V,A), A = {(i, j), (j, i) : {i, j} ∈ E}, vsource = vsink = 0 ;
R = RM = {1} ; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0) ;
li,1 = 0, ui,1 = Q, i ∈ V ;

Formulation
Integer variables xe, e ∈ E.

Min
∑
e∈E

cexe (4a)

S.t.
∑

e∈δ(i)
xe = 2, i ∈ V+. (4b)

L = d
∑n

i=1 di/Qe, U = n ; M(xe) = {(i, j), (j, i)},
e = {i, j} ∈ E.
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How to Adapt the CVRP Model for the OVRP?

Single graph
G = (V,A), A = {(i, j), (j, i) : {i, j} ∈ E}, vsource = vsink = 0 ;
R = RM = {1} ; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0) ;
li,1 = 0, ui,1 = Q, i ∈ V ;

Formulation
Integer variables xa, a ∈ A.

Min
∑
a∈A

c′axa (5a)

S.t.
∑

a∈δ−(i)
xa = 1, i ∈ V+. (5b)

L = d
∑n

i=1 di/Qe, U = n ; M(xa) = {(i, j)}, a = (i, j) ∈ A.
c′a = ca if a 6∈ δ−(0), and 0 otherwise.
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Open Vehicle Routing Problem (OVRP) : graph
Single graph
G = (V,A), A = A′ ∪ {(i, 0) : i ∈ V +}, ci0 = 0, i ∈ V + ; vsource = vsink = 0 ;
R = RM = {1} ; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0) ;
li,1 = 0, ui,1 = Q, i ∈ V ;
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Open Vehicle Routing Problem (OVRP) : graph

Single graph
G = (V,A), A = A′ ∪ {(i, 0) : i ∈ V +}, ci0 = 0, i ∈ V + ; vsource = vsink = 0 ;
R = RM = {1} ; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0) ;
li,1 = 0, ui,1 = Q, i ∈ V ;
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Open Vehicle Routing Problem (OVRP) : solution
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VRPSolver Model for OVRP

Formulation
Integer variables xa, a ∈ A.

Min
∑
a∈A

caxa (6a)

S.t.
∑

a∈δ−(i)
xa = 1, i ∈ V +. (6b)

L = d
∑n

i=1 di/Qe, U = n ; M(xa) = {a}, a ∈ A.
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Multi-Depot Vehicle Routing Problem (MDVRP)

Graph G′ = (V,E), V = {0, . . . , n+m− 1}, D = {0, 1, . . . ,m} is
a set of depots, V+ = {m+ 1, . . . , n+m− 1} are the customers ;
E = {{i, j} : i, j ∈ V, i < j, i or j is not a depot} ; cost ce, e ∈ E ;
positive demand di, i ∈ V+ ; vehicle capacity Q.

Find a minimum cost set of routes, starting and ending at the
same depot, visiting all customers and such that the sum of the
demands of the customers in a route does not exceed capacity.
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Multi-Depot Vehicle Routing Problem (MDVRP)

Graph G′ = (V,E), V = {0, . . . , n+m− 1}, D = {0, 1, . . . ,m} is
a set of depots, V+ = {m+ 1, . . . , n+m− 1} are the customers ;
E = {{i, j} : i, j ∈ V, i < j, i or j is not a depot} ; cost ce, e ∈ E ;
positive demand di, i ∈ V+ ; vehicle capacity Q.

Find a minimum cost set of routes, starting and ending at the
same depot, visiting all customers and such that the sum of the
demands of the customers in a route does not exceed capacity.
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How to Adapt the CVRP Model for the MDVRP?

Single graph
G = (V,A), A = {(i, j), (j, i) : {i, j} ∈ E}, vsource = vsink = 0 ;
R = RM = {1} ; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0) ;
li,1 = 0, ui,1 = Q, i ∈ V ;

Formulation
Integer variables xe, e ∈ E.

Min
∑
e∈E

cexe (7a)

S.t.
∑

e∈δ(i)
xe = 2, i ∈ V+. (7b)

L = d
∑n

i=1 di/Qe, U = n ; M(xe) = {(i, j), (j, i)},
e = {i, j} ∈ E.
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How to Adapt the CVRP Model for the MDVRP?

Multiple graphs
Gk = (V k, Ak) for each k ∈ D,
Ak = {(vki , vkj ), (vkj , vki ) : {i, j} ∈ E, i 6= D \ k}, vsource = vsink = vkk ;
Rk = Rk

M = {1} ; qka,1 = (dvk
i
+ dvk

j
)/2, a = (vki , v

k
j ) ∈ Ak (define dvk

k
= 0) ;

lvk
i ,1 = 0, uvk

i ,1 = Q, vki ∈ V k.

Formulation
Integer variables xe, e ∈ E, with no edge between depots.

Min
∑
e∈E

cexe (8a)

S.t.
∑

e∈δ(i)
xe = 2, i ∈ V+. (8b)

Lk = 0, Uk = n, for each k ∈ D ;
M(xe) = {(vki , vkj ), (vkj , vki ) : vki , vkj ∈ Gk}, e = {i, j} ∈ E.
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Multi-Depot Vehicle Routing Problem (MDVRP) : graphs
Multiple graphs
Gk = (V k, Ak) for each k ∈ D,
Ak = {(vki , vkj ), (vkj , vki ) : {i, j} ∈ E, i 6= D \ k}, vsource = vsink = vkk ;
Rk = Rk

M = {1} ; qka,1 = (dvk
i
+ dvk

j
)/2, a = (vki , v

k
j ) ∈ Ak (define dvk

k
= 0) ;

lvk
i ,1 = 0, uvk

i ,1 = Q, vki ∈ V k.
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Multi-Depot Vehicle Routing Problem (MDVRP) : graphs
Multiple graphs
Gk = (V k, Ak) for each k ∈ D,
Ak = {(vki , vkj ), (vkj , vki ) : {i, j} ∈ E, i 6= D \ k}, vsource = vsink = vkk ;
Rk = Rk

M = {1} ; qka,1 = (dvk
i
+ dvk

j
)/2, a = (vki , v

k
j ) ∈ Ak (define dvk

k
= 0) ;

lvk
i ,1 = 0, uvk

i ,1 = Q, vki ∈ V k.
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Multi-Depot Vehicle Routing Problem (MDVRP) :
solution
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Bin Packing Problem (BPP)

Data : Set T of items ; bin capacities Q ; item weight wt, t ∈ T .
Goal : Find a packing using the minimum number of bins, such
that, the total weight of the items in a bin does not exceed its
capacity.

Figure – Toy instance
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Bin Packing Problem (BPP)

Graph G

v0 v1 v2 v3 v|T |−1 v|T |a1+

a1−

a2+

a2−

a3+

a3−

a|T |+

a|T |−

. . . . . .

Capacity is the only one resource with consumption :
qat+ = wt, qaj− = 0, t ∈ T
Consumption bounds [0, Q] for all nodes

RCSP Subproblem

[0, Q] [0, Q] [0, Q] [0, Q] [0, Q] [0, Q]w1+

0

w2+

0

w3+

0

w|T |+

0

. . . . . .
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Bin Packing Problem (BPP)

Toy instance with T = 5 and Q = 14

Graph

0 1 2 3 4 5

w1 = 10 w2 = 9 w3 = 8 w4 = 7 w5 = 6a1+

a1−

a2+
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a3−
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a5−

Figure – Toy instance solution
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Bin Packing Problem (BPP)

Toy instance with T = 5 and Q = 14, solution :

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

8 6

7

9

10

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

W = 14

W = 7

W = 9

W = 10

Instance toy.txt, objective value = 4 bins
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Bin Packing Problem (BPP)

Arc mapping

x0, x1

x0

x2 x3 x|T |

. . . . . .

Formulation and Additional Elements

Min x0

S.t. xt = 1, t ∈ T ;

Subproblem cardinality : L = 0, U =∞

Packing sets : B = ∪t∈T {{at+}}

Branching over accumulated resource consumption and, if still
needed, by Ryan and Foster rule

Enumeration is on
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Variable Sized Bin Packing Problem (VSBPP)

Data : Set T of items ; Set B of bin types ; bin capacity
Qk, k ∈ B ; bin cost ck, k ∈ B ; bin availability sk, k ∈ B ; item
weight wt, t ∈ T .
Goal : Find a packing minimizing the cost with bins, such that,
the total weight of the items in a bin does not exceed its
capacity and the availability of bins is not violated.

Figure – Toy instance
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Variable Sized Bin Packing Problem (VSBPP)

Data : Set T of items ; Set B of bin types ; bin capacity
Qk, k ∈ B ; bin cost ck, k ∈ B ; bin availability sk, k ∈ B ; item
weight wt, t ∈ T .
Goal : Find a packing minimizing the cost with bins, such that,
the total weight of the items in a bin does not exceed its
capacity and the availability of bins is not violated.

Figure – Toy instance solution
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How to Adapt the BPP Model for the VSBPP?

Graph G

v0 v1 v2 v3 v|T |−1 v|T |a1+

a1−

a2+

a2−

a3+

a3−

a|T |+

a|T |−

. . . . . .
t

ak1

ak2

ak3

Capacity is the only one resource with consumption :
qat+ = wt, qaj− = 0, t ∈ T
Consumption bounds [0,maxk∈B Q

k] for nodes vt, t ∈ T
Consumption bounds [0, Qk] for arcs ak, k ∈ B
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How to Adapt the BPP Model for the VSBPP?

Arc mapping

v0 v1 v2 v3 v|T |−1 v|T |x1 x2 x3 x5
. . . . . .

t
y1
y2
y3

Model
Let xt = 1 if item t assigned, let yk be the number of bin of type
k ∈ B used.

Min
∑

k∈B ckyk (9a)
S.t. xt = 1, t ∈ T (9b)

yk ≤ sk, k ∈ B (9c)
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Black and White Traveling Salesman Problem (BWTSP)

Let B be the set of black nodes, W be the set of white
nodes, a complete graph G = (B ∪W,E), and Q ∈ N+.
Find a shortest Hamiltonian tour, visiting all vertices and
such that the number of white vertices between any two
customers not exceed value Q.

How to model that with one subproblem creating
paths that :

start with a black node,
visit at most Q white nodes,
and finish with a black node ?
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Black and White Traveling Salesman Problem (BWTSP)

B = {1, 2} and Q = 2
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Instance toy.tsp
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Black and White Traveling Salesman Problem (BWTSP)

B = {1, 2} and Q = 2
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Instance toy.tsp, cost 3381
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Black and White Traveling Salesman Problem (BWTSP)

Graph representation of the model

Resource bounds on nodes : [0, Q]

Resource consumption of arcs
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Black and White Traveling Salesman Problem (BWTSP)

Graph representation of the model, B = {1, 2} and Q = 2

s t
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Black and White Traveling Salesman Problem (BWTSP)

Graph representation of the model, B = {1, 2} and Q = 2

s t
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Instance toy.tsp, cost 3381
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Black and White Traveling Salesman Problem (BWTSP)

Let B be the set of black nodes, W be the set of white
nodes, a complete graph G = (B ∪W,E), and Q ∈ N+.
We denote V = B ∪W , ce the cost of using e ∈ E

Formulation
Integer variables xe, e ∈ E

Min
∑

e∈E cexe (10a)
S.t.

∑
e∈δ(i) xe = 2, i ∈ V (10b)

L = U = Q ;
M(xe) = {edges representing e in the subproblem graph}

Is this model works ? Try to print a solution.
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Black and White Traveling Salesman Problem (BWTSP)

Figure – Example of a feasible solution to the previous model

We need subtour elimination constraints :
Consider black node 1 ∈ B,∑
i∈V1∪{1}

∑
j∈V2∪{b}

xij ≥ 2 b ∈ B\{1}, V1∪V2 = V \{1, b}, V1∩V2 = ∅

Separation by looking for mincut between pairs of black nodes
(1, b), b ∈ B \ {1}
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