VRPSolver Tutorial

Teobaldo Bulhões, Artur Pessoa, Ruslan Sadykov and Guillaume Marques, Eduardo Queiroga

November 2019

Capacitated Vehicle Routing Problem (CVRP)

- Undirected graph $G^{\prime}=(V, E), V=\{0, \ldots, n\}, 0$ is the depot, $V_{+}=\{1, \ldots, n\}$ are the customers; positive cost $c_{e}, e \in E$; positive demand $d_{i}, i \in V_{+}$; vehicle capacity Q.
- Find a minimum cost set of routes, starting and ending at the depot, visiting all customers and such that the sum of the demands of the customers in a route does not exceed vehicle capacity.

$$
d_{3}=1
$$

$$
Q=30
$$

$$
\begin{equation*}
d_{1}=16 \tag{2}
\end{equation*}
$$

$$
d_{2}=18
$$

4
(5) $d_{5}=8$

Capacitated Vehicle Routing Problem (CVRP)

- Undirected graph $G^{\prime}=(V, E), V=\{0, \ldots, n\}, 0$ is the depot, $V_{+}=\{1, \ldots, n\}$ are the customers; positive cost $c_{e}, e \in E$; positive demand $d_{i}, i \in V_{+}$; vehicle capacity Q.
- Find a minimum cost set of routes, starting and ending at the depot, visiting all customers and such that the sum of the demands of the customers in a route does not exceed vehicle capacity.

Capacitated Vehicle Routing Problem (CVRP) : Compact Formulation

- Undirected graph $G^{\prime}=(V, E), V=\{0, \ldots, n\}, 0$ is the depot, $V_{+}=\{1, \ldots, n\}$ are the customers ; positive cost c_{e}, $e \in E$; positive demand $d_{i}, i \in V^{+}$; vehicle capacity Q.
- Find a minimum cost set of routes, starting and ending at the depot, visiting all customers and such that the sum of the demands of the customers in a route does not exceed vehicle capacity.

$$
\begin{array}{ccc}
\text { Min } & \sum_{e \in E} c_{e} x_{e} & \\
\text { S.t. } & \sum_{e \in \delta(i)} x_{e}=2, & i \in V^{+} ; \\
& \sum_{e \in \delta(S)} x_{e} \geq 2\left\lceil\frac{d(S)}{Q}\right\rceil, & S \subseteq V^{+} ; \\
& x_{e} \in \mathbb{Z}_{+}, & e \in E \tag{1d}
\end{array}
$$

Capacitated Vehicle Routing Problem (CVRP) : graph

Single graph

```
\(G=(V, A), A=\{(i, j),(j, i):\{i, j\} \in E\}, v_{\text {source }}=v_{\text {sink }}=0 ;\)
\(R=R_{M}=\{1\} ; q_{a, 1}=\left(d_{i}+d_{j}\right) / 2, a=(i, j) \in A\) (define \(\left.d_{0}=0\right) ;\)
\(l_{i, 1}=0, u_{i, 1}=Q, i \in V\);
```


Capacitated Vehicle Routing Problem (CVRP) : solution

VRPSolver Model for CVRP

Formulation

Integer variables $x_{e}, e \in E$.

$$
\begin{array}{ll}
\text { Min } & \sum_{e \in E} c_{e} x_{e} \\
\text { S.t. } & \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V_{+} . \tag{2b}
\end{array}
$$

$L=\left\lceil\sum_{i=1}^{n} d_{i} / Q\right\rceil, U=n ; M\left(x_{e}\right)=\{(i, j),(j, i)\}$,
$e=\{i, j\} \in E$.

Open Vehicle Routing Problem (OVRP)

- Directed graph $G^{\prime}=\left(V, A^{\prime}\right), V=\{0, \ldots, n\}, 0$ is the depot, $V_{+}=\{1, \ldots, n\}$ are the customers and A^{\prime} have no arcs ending at the depot ; positive cost $c_{a}, a \in A^{\prime}$; positive demand $d_{i}, i \in V_{+}$; vehicle capacity Q.
- Find a minimum cost set of routes, starting at the depot, visiting all customers such that the sum of the demands of the customers in a route does not exceed vehicle capacity.

0

$d_{2}=18$

(4)
$d_{4}=13$
(5) $d_{5}=8$

Open Vehicle Routing Problem (OVRP)

- Directed graph $G^{\prime}=\left(V, A^{\prime}\right), V=\{0, \ldots, n\}, 0$ is the depot, $V_{+}=\{1, \ldots, n\}$ are the customers and A^{\prime} have no arcs ending at the depot ; positive cost $c_{a}, a \in A^{\prime}$; positive demand $d_{i}, i \in V_{+}$; vehicle capacity Q.
- Find a minimum cost set of routes, starting at the depot, visiting all customers such that the sum of the demands of the customers in a route does not exceed vehicle capacity.

Open Vehicle Routing Problem (OVRP) : Compact Formulation

- Directed graph $G^{\prime}=\left(V, A^{\prime}\right), V=\{0, \ldots, n\}, 0$ is the depot, $V_{+}=\{1, \ldots, n\}$ are the customers and A^{\prime} have no arcs ending at the depot; positive cost $c_{a}, a \in A^{\prime}$; positive demand $d_{i}, i \in V_{+}$; vehicle capacity Q.
- Find a minimum cost set of routes, starting at the depot, visiting all customers such that the sum of the demands of the customers in a route does not exceed vehicle capacity.

$$
\begin{array}{lcl}
\text { Min } & \sum_{a \in A^{\prime}} c_{a} x_{a} & \\
\text { S.t. } & \sum_{a \in \delta^{-}(i)} x_{a}=1, & i \in V^{+} ; \\
& \sum_{a \in \delta^{-}(S)} x_{a} \geq\left\lceil\frac{d(S)}{Q}\right\rceil, & S \subseteq V^{+} ; \\
& x_{a} \in \mathbb{Z}_{+}, & a \in A^{\prime} .
\end{array}
$$

How to Adapt the CVRP Model for the OVRP?

Single graph

$$
\begin{aligned}
& G=(V, A), A=\{(i, j),(j, i):\{i, j\} \in E\}, v_{\text {source }}=v_{\text {sink }}=0 \\
& \left.R=R_{M}=\{1\} ; q_{a, 1}=\left(d_{i}+d_{j}\right) / 2, a=(i, j) \in A \text { (define } d_{0}=0\right) \\
& l_{i, 1}=0, u_{i, 1}=Q, i \in V
\end{aligned}
$$

Formulation

Integer variables $x_{e}, e \in E$.

$$
\begin{align*}
& \text { Min } \quad \sum_{e \in E} c_{e} x_{e} \tag{4a}\\
& \text { S.t. } \quad \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V_{+} \tag{4b}\\
& \begin{array}{l}
L=\left\lceil\sum_{i=1}^{n} d_{i} / Q\right\rceil, U=n ; M\left(x_{e}\right)=\{(i, j),(j, i)\}, \\
e=\{i, j\} \in E .
\end{array}
\end{align*}
$$

How to Adapt the CVRP Model for the OVRP?

Single graph

$$
\begin{aligned}
& G=(V, A), A=\{(i, j),(j, i):\{i, j\} \in E\}, v_{\text {source }}=v_{\text {sink }}=0 \\
& \left.R=R_{M}=\{1\} ; q_{a, 1}=\left(d_{i}+d_{j}\right) / 2, a=(i, j) \in A \text { (define } d_{0}=0\right) \\
& l_{i, 1}=0, u_{i, 1}=Q, i \in V
\end{aligned}
$$

Formulation

Integer variables $x_{a}, a \in A$.
$\operatorname{Min} \quad \sum_{a \in A} c_{a}^{\prime} x_{a}$
S.t. $\quad \sum_{a \in \delta^{-}(i)} x_{a}=1, \quad i \in V_{+}$.
$L=\left\lceil\sum_{i=1}^{n} d_{i} / Q\right\rceil, U=n ; M\left(x_{a}\right)=\{(i, j)\}, a=(i, j) \in A$.
$c_{a}^{\prime}=c_{a}$ if $a \notin \delta^{-}(0)$, and 0 otherwise.

Open Vehicle Routing Problem (OVRP) : graph

Single graph

$G=(V, A), A=A^{\prime} \cup\left\{(i, 0): i \in V^{+}\right\}, c_{i 0}=0, i \in V^{+} ; v_{\text {source }}=v_{\text {sink }}=0 ;$
$R=R_{M}=\{1\} ; q_{a, 1}=\left(d_{i}+d_{j}\right) / 2, a=(i, j) \in A$ (define $\left.d_{0}=0\right) ;$
$l_{i, 1}=0, u_{i, 1}=Q, i \in V$;

Open Vehicle Routing Problem (OVRP) : graph

Single graph

$G=(V, A), A=A^{\prime} \cup\left\{(i, 0): i \in V^{+}\right\}, c_{i 0}=0, i \in V^{+} ; v_{\text {source }}=v_{\text {sink }}=0 ;$
$R=R_{M}=\{1\} ; q_{a, 1}=\left(d_{i}+d_{j}\right) / 2, a=(i, j) \in A$ (define $\left.d_{0}=0\right)$;
$l_{i, 1}=0, u_{i, 1}=Q, i \in V$;

Open Vehicle Routing Problem (OVRP) : solution

VRPSolver Model for OVRP

Formulation

Integer variables $x_{a}, a \in A$.

$$
\begin{array}{ll}
\text { Min } & \sum_{a \in A} c_{a} x_{a} \\
\text { S.t. } & \sum_{a \in \delta^{-}(i)} x_{a}=1, \quad i \in V^{+} . \tag{6b}
\end{array}
$$

$L=\left\lceil\sum_{i=1}^{n} d_{i} / Q\right\rceil, U=n ; M\left(x_{a}\right)=\{a\}, a \in A$.

Multi-Depot Vehicle Routing Problem (MDVRP)

- Graph $G^{\prime}=(V, E), V=\{0, \ldots, n+m-1\}, D=\{0,1, \ldots, m\}$ is a set of depots, $V_{+}=\{m+1, \ldots, n+m-1\}$ are the customers; $E=\{\{i, j\}: i, j \in V, i<j, i$ or j is not a depot $\} ; \operatorname{cost} c_{e}, e \in E$; positive demand $d_{i}, i \in V_{+}$; vehicle capacity Q.
- Find a minimum cost set of routes, starting and ending at the same depot, visiting all customers and such that the sum of the demands of the customers in a route does not exceed capacity.

$$
d_{4}=1
$$

(4)

$$
Q=30
$$

0 (2)

$$
\begin{equation*}
d_{2}=16 \tag{3}
\end{equation*}
$$

$$
d_{3}=18
$$

(6) $d_{6}=8$

Multi-Depot Vehicle Routing Problem (MDVRP)

- Graph $G^{\prime}=(V, E), V=\{0, \ldots, n+m-1\}, D=\{0,1, \ldots, m\}$ is a set of depots, $V_{+}=\{m+1, \ldots, n+m-1\}$ are the customers; $E=\{\{i, j\}: i, j \in V, i<j, i$ or j is not a depot $\}$; $\operatorname{cost} c_{e}, e \in E$; positive demand $d_{i}, i \in V_{+}$; vehicle capacity Q.
- Find a minimum cost set of routes, starting and ending at the same depot, visiting all customers and such that the sum of the demands of the customers in a route does not exceed capacity.

How to Adapt the CVRP Model for the MDVRP?

Single graph

$$
\begin{aligned}
& G=(V, A), A=\{(i, j),(j, i):\{i, j\} \in E\}, v_{\text {source }}=v_{\text {sink }}=0 \\
& \left.R=R_{M}=\{1\} ; q_{a, 1}=\left(d_{i}+d_{j}\right) / 2, a=(i, j) \in A \text { (define } d_{0}=0\right) \\
& l_{i, 1}=0, u_{i, 1}=Q, i \in V
\end{aligned}
$$

Formulation

Integer variables $x_{e}, e \in E$.

$$
\begin{array}{ll}
\text { Min } & \sum_{e \in E} c_{e} x_{e} \\
\text { S.t. } & \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V_{+} . \tag{7b}
\end{array}
$$

$$
L=\left\lceil\sum_{i=1}^{n} d_{i} / Q\right\rceil, U=n ; M\left(x_{e}\right)=\{(i, j),(j, i)\}
$$

$$
e=\{i, j\} \in E
$$

How to Adapt the CVRP Model for the MDVRP?

Multiple graphs

$G^{k}=\left(V^{k}, A^{k}\right)$ for each $k \in D$,
$A^{k}=\left\{\left(v_{i}^{k}, v_{j}^{k}\right),\left(v_{j}^{k}, v_{i}^{k}\right):\{i, j\} \in E, i \neq D \backslash k\right\}, v_{\text {source }}=v_{\text {sink }}=v_{k}^{k}$;
$R^{k}=R_{M}^{k}=\{1\} ; q_{a, 1}^{k}=\left(d_{v_{i}^{k}}+d_{v_{j}^{k}}\right) / 2, a=\left(v_{i}^{k}, v_{j}^{k}\right) \in A^{k}$ (define $\left.d_{v_{k}^{k}}=0\right)$;
$l_{v_{i}^{k}, 1}=0, u_{v_{i}^{k}, 1}=Q, v_{i}^{k} \in V^{k}$.

Formulation

Integer variables $x_{e}, e \in E$, with no edge between depots.

$$
\begin{array}{ll}
\text { Min } & \sum_{e \in E} c_{e} x_{e} \\
\text { S.t. } & \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V_{+} . \tag{8b}
\end{array}
$$

$L^{k}=0, U^{k}=n$, for each $k \in D$;
$M\left(x_{e}\right)=\left\{\left(v_{i}^{k}, v_{j}^{k}\right),\left(v_{j}^{k}, v_{i}^{k}\right): v_{i}^{k}, v_{j}^{k} \in G^{k}\right\}, e=\{i, j\} \in E$.

Multi-Depot Vehicle Routing Problem (MDVRP) : graphs

Multiple graphs

$G^{k}=\left(V^{k}, A^{k}\right)$ for each $k \in D$,
$A^{k}=\left\{\left(v_{i}^{k}, v_{j}^{k}\right),\left(v_{j}^{k}, v_{i}^{k}\right):\{i, j\} \in E, i \neq D \backslash k\right\}, v_{\text {source }}=v_{\text {sink }}=v_{k}^{k}$;
$R^{k}=R_{M}^{k}=\{1\} ; q_{a, 1}^{k}=\left(d_{v_{i}^{k}}+d_{v_{j}^{k}}\right) / 2, a=\left(v_{i}^{k}, v_{j}^{k}\right) \in A^{k}$ (define $d_{v_{k}^{k}}=0$);
$l_{v_{i}^{k}, 1}=0, u_{v_{i}^{k}, 1}=Q, v_{i}^{k} \in V^{k}$.

Multi-Depot Vehicle Routing Problem (MDVRP) : graphs

Multiple graphs

$G^{k}=\left(V^{k}, A^{k}\right)$ for each $k \in D$,
$A^{k}=\left\{\left(v_{i}^{k}, v_{j}^{k}\right),\left(v_{j}^{k}, v_{i}^{k}\right):\{i, j\} \in E, i \neq D \backslash k\right\}, v_{\text {source }}=v_{\text {sink }}=v_{k}^{k}$;
$R^{k}=R_{M}^{k}=\{1\} ; q_{a, 1}^{k}=\left(d_{v_{i}^{k}}+d_{v_{j}^{k}}\right) / 2, a=\left(v_{i}^{k}, v_{j}^{k}\right) \in A^{k}$ (define $\left.d_{v_{k}^{k}}=0\right)$;
$l_{v_{i}^{k}, 1}=0, u_{v_{i}^{k}, 1}=Q, v_{i}^{k} \in V^{k}$.

Multi-Depot Vehicle Routing Problem (MDVRP) :

 solution

Bin Packing Problem (BPP)

Data : Set T of items; bin capacities Q; item weight $w_{t}, t \in T$.
Goal : Find a packing using the minimum number of bins, such that, the total weight of the items in a bin does not exceed its capacity.

Figure - Toy instance

Bin Packing Problem (BPP)

Graph G

- Capacity is the only one resource with consumption :
$q_{a_{+}}=w_{t}, q_{a_{j-}}=0, t \in T$
- Consumption bounds $[0, Q]$ for all nodes

RCSP Subproblem

Bin Packing Problem (BPP)

Toy instance with $T=5$ and $Q=14$

Graph

Figure - Toy instance solution

Bin Packing Problem (BPP)

Toy instance with $T=5$ and $Q=14$, solution :

Instance toy.txt, objective value $=4$ bins

Bin Packing Problem (BPP)

Arc mapping

Formulation and Additional Elements

$$
\begin{array}{cc}
\operatorname{Min} & x_{0} \\
\text { S.t. } & x_{t}=1, \quad t \in T \text {; }
\end{array}
$$

- Subproblem cardinality : $L=0, U=\infty$
- Packing sets : $\mathcal{B}=\cup_{t \in T}\left\{\left\{a_{t+}\right\}\right\}$
- Branching over accumulated resource consumption and, if still needed, by Ryan and Foster rule
- Enumeration is on

Variable Sized Bin Packing Problem (VSBPP)

Data : Set T of items; Set B of bin types; bin capacity $Q^{k}, k \in B$; bin cost $c_{k}, k \in B$; bin availability $s_{k}, k \in B$; item weight $w_{t}, t \in T$.
Goal : Find a packing minimizing the cost with bins, such that, the total weight of the items in a bin does not exceed its capacity and the availability of bins is not violated.

Figure - Toy instance

Variable Sized Bin Packing Problem (VSBPP)

Data : Set T of items; Set B of bin types; bin capacity $Q^{k}, k \in B$; bin cost $c_{k}, k \in B$; bin availability $s_{k}, k \in B$; item weight $w_{t}, t \in T$.
Goal : Find a packing minimizing the cost with bins, such that, the total weight of the items in a bin does not exceed its capacity and the availability of bins is not violated.

Cost 5
Figure - Toy instance solution

How to Adapt the BPP Model for the VSBPP?

Graph G

- Capacity is the only one resource with consumption :

$$
q_{a_{t+}}=w_{t}, q_{a_{j-}}=0, t \in T
$$

- Consumption bounds $\left[0, \max _{k \in B} Q^{k}\right]$ for nodes $v_{t}, t \in T$
- Consumption bounds $\left[0, Q^{k}\right]$ for $\operatorname{arcs} a_{k}, k \in B$

How to Adapt the BPP Model for the VSBPP?

Arc mapping

Model

Let $x_{t}=1$ if item t assigned, let y_{k} be the number of bin of type $k \in B$ used.

$$
\begin{array}{ccc}
\text { Min } & \sum_{k \in B} c_{k} y_{k} & \\
\text { S.t. } & x_{t}=1, & t \in T \\
& y_{k} \leq s_{k}, & k \in B \tag{9c}
\end{array}
$$

- Let B be the set of black nodes, W be the set of white nodes, a complete graph $G=(B \cup W, E)$, and $Q \in \mathbb{N}^{+}$.
- Find a shortest Hamiltonian tour, visiting all vertices and such that the number of white vertices between any two customers not exceed value Q.

How to model that with one subproblem creating paths that:

- start with a black node,
- visit at most Q white nodes,
- and finish with a black node?

Black and White Traveling Salesman Problem (BWTSP)

$$
B=\{1,2\} \text { and } Q=2
$$(6)

(2)

Instance toy.tsp

Black and White Traveling Salesman Problem (BWTSP)

$$
B=\{1,2\} \text { and } Q=2
$$

Instance toy.tsp, cost 3381

Black and White Traveling Salesman Problem (BWTSP)

Graph representation of the model
Complete subgraph

- Resource bounds on nodes : $[0, Q]$
- Resource consumption of arcs

Black and White Traveling Salesman Problem (BWTSP)

Graph representation of the model, $B=\{1,2\}$ and $Q=2$

Instance toy.tsp

Black and White Traveling Salesman Problem (BWTSP)

Graph representation of the model, $B=\{1,2\}$ and $Q=2$

Instance toy.tsp, cost 3381

Black and White Traveling Salesman Problem (BWTSP)

- Let B be the set of black nodes, W be the set of white nodes, a complete graph $G=(B \cup W, E)$, and $Q \in \mathbb{N}^{+}$.
- We denote $V=B \cup W, c_{e}$ the cost of using $e \in E$

Formulation

Integer variables $x_{e}, e \in E$

$$
\begin{array}{cc}
\text { Min } & \sum_{e \in E} c_{e} x_{e} \\
\text { S.t. } & \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V \tag{10b}
\end{array}
$$

$L=U=Q ;$
$M\left(x_{e}\right)=\{$ edges representing e in the subproblem graph $\}$

Is this model works? Try to print a solution.

Black and White Traveling Salesman Problem (BWTSP)

Figure - Example of a feasible solution to the previous model

We need subtour elimination constraints :
Consider black node $1 \in B$,
$\sum_{i \in V_{1} \cup\{1\}} \sum_{j \in V_{2} \cup\{b\}} x_{i j} \geq 2 \quad b \in B \backslash\{1\}, V_{1} \cup V_{2}=V \backslash\{1, b\}, V_{1} \cap V_{2}=\emptyset$
Separation by looking for mincut between pairs of black nodes $(1, b), b \in B \backslash\{1\}$

